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ABSTRACT

Recent results in compressed sensing show that a sparse

or compressible signal can be reconstructed from a few inco-

herent measurements. Compressive sensing systems are not

immune to noise, which is always present in practical acqui-

sition systems. In this paper we propose robust methods for

sampling and reconstructing sparse signals in the presence of

impulsive noise. Analysis of the proposed methods demon-

strates their robustness under heavy–tailed models. Simu-

lations show that the proposed methods outperform existing

compressed sensing techniques in impulsive environments,

while having similar performance in light-tailed environments.

Index Terms— Sampling methods, signal reconstruction,

nonlinear estimation, impulse noise

1. INTRODUCTION

Compressed sensing (CS) is a recently introduced novel frame-

work that goes against the traditional data acquisition paradigm.

CS demonstrates that a sparse, or compressible, signal can be

acquired using a low rate acquisition process that projects the

signal onto a small set of vectors incoherent with the sparsity

basis [1]. Since noise is always present in real data acquisition

systems, a range of different algorithms have been developed

that enable approximate reconstruction of sparse signals from

noisy compressive measurements [2, 3, 4].

Noise contributions to the overall system can be separated

into two models: observation noise and sampling noise. Ob-

servation noise is any perturbation introduced to the under-

lying signal prior to the sampling process, e.g., noisy chan-

nel effects or salt and pepper noise in images. The (addi-

tive) model of the signal in this case is: x = x0 + w, where

x0 ∈ R
n is the original signal and w is the additive noise.

Sampling noise, in contrast, introduces perturbations to

the measurements in conjunction with the sampling process,

i.e., y = y0(x) + z where y0(x) ∈ R
m, m < n, is the vector

of samples, or measurements of x, and z is the corrupting

noise, e.g., quantization noise or sensor noise. If we consider

Φ as the linear measurement process, then the overall noise

contribution is r = z+Φw. When w and z are both Gaussian,

r is also Gaussian and both problems can be simultaneously

addressed by Gaussian–derived reconstruction techniques [3].
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In contrast to the typical Gaussian assumption, heavy–

tailed processes exhibit very large, or infinite, variance. Ex-

isting reconstruction algorithms operating on such processes

yield estimates far from the desired original signal. Similarly,

linear projections are severely degraded by the presence of

large amplitude outliers, e.g., spreading impulses throughout

the measurements and precluding fair reconstructions even

when robust reconstruction techniques are employed.

This paper develops robust methods for sampling and re-

constructing sparse signals in the presence of impulsive noise.

We approach the problem from a statistical point of view us-

ing robust methods derived from the Generalized Cauchy dis-

tribution (GCD). Robust sampling operators, based on the

weighted myriad estimators, are proposed. Also introduced

are geometric reconstruction algorithm based on L1 mini-

mization with a Lorentzian norm feasible set constraint. Pre-

sented analysis shows the proposed methods yields dramatic

performance improvements in heavy–tailed environments and

comparable performance in light–tailed environments.

2. BACKGROUND AND MOTIVATION

2.1. Compressed Sensing Review

Let x ∈ R
n be a signal that is either s–sparse or compressible

in some orthogonal basis Ψ. The signal is s–sparse if at most

s of its coefficients are nonzero, where s � n. The signal is

compressible if its ordered set of coefficients decays rapidly

and x is well–approximated by the first s coefficients. In the

following we assume, without loss of generality, that Ψ = I.
Let Φ be an m×n sensing matrix, m < n, with rows that

form a set of vectors incoherent with the sparsity basis [1].

The signal x is measured by y = Φx. It has been shown that

a linear program (Basis Pursuit) can recover the original sig-

nal, x, from y if the number of measurements is of the order

of O(s log(n)) and the sensing matrices obey the restricted

isometry property [1]. The restricted isometry constant defi-

nition is as follows.

Definition 1 For every integer 1 ≤ S ≤ m, define δS , the
S–restricted isometry constant of Φ, as the smallest positive
quantity such that

(1 − δS)‖v‖2
2 ≤ ‖Φv‖2

2 ≤ (1 + δS)‖v‖2
2 (1)
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for all subsets T of cardinality at most S and vectors v sup-
ported on T .

In a realistic scenario, the measurements are noise corrupted

and can be modeled as y = Φx + z, where z is zero-mean

additive white noise. Basis Pursuit Denoising (BPD) relaxes

the requirement that the reconstructed signal exactly explain

the measurements [2], solving the optimization problem

min
x∈Rn

‖x‖1 s. t. ‖y − Φx‖2 ≤ ε, (2)

for some small ε > 0. In [5] it is shown that if ‖z‖2 ≤ ε and

δ2s <
√

2 − 1, then the reconstructed signal, x̂, is guaranteed

to obey ‖x − x̂‖2 ≤ Cε, where the constant C depends on

δ2s. Other sparse solution determination approaches include

greedy algorithms that iteratively construct approximations,

Matching pursuit and Orthogonal Matching Pursuit (OMP)[4]

being examples. OMP, for instance, solves a LS regression at

each iteration, thereby inducing a denoising effect.

Both aforementioned approaches rely on Gaussian statis-

tics, or finite variance, assumptions. In impulsive or heavy–

tailed observation noise cases, however, the variance can be

very large, or infinite, thus yielding estimates with significant

deviations. Impulsive cases, for example, yield large ampli-

tude outlier components spread across all measurements by

the (linear) sampling process, causing a breakdown in the

recovery process. Even in impulsive sampling cases, where

relatively few measurements are corrupted, the gross errors

breakdown deriving premises, consequently yielding aberrant

reconstructions.

2.2. GCD Based Robust Estimation

We propose the use of robust statistics to derive CS methods

suitable for impulsive environments. The M–GC estimator is

derived in [6] as a Generalized Cauchy density ML estimator,

or M–estimator for the cost function ρ(x) = log{σp + |x|p}.

This estimator is extendable to a weighted filter structure ad-

mitting real–valued weights, thereby providing a robust cor-

relation estimation between two vectors or sequences.

Definition 2 Let x = [x1, . . . , xn] be a vector of observa-
tions and h = [h1, . . . , hn] a vector of real valued weights.
The weighted M–GC estimate is defined as

θ̂ = arg min
θ

[ N∑
i=1

log{σp + |hi||sgn(hi)xi − θ|p}
]
. (3)

The p = 2 case defines the standard Cauchy distribution opti-

mal weighted myriad filter [7]

θ̂ = myriad(σ; |hi| ◦ sgn(hi)xi)|ni=1. (4)

The M–GC cost function defines a pseudo–norm for R
m,

and therefore a metric for the space.

Definition 3 For u ∈ R
m, the LLp norm of u is defined as

‖u‖LLp,σ =
m∑

i=1

log{1 + σ−p|ui|p}, σ > 0. (5)

The LLp norm doesn’t over penalize large deviations, and is

therefore a robust metric appropriate for impulsive environ-

ments. Importantly, the p = 2 case defines the well known

Lorentzian norm with property ‖u‖LL2,σ ≤ σ−2‖u‖2
2. In

general, the LLp norms can be used to define robust regres-

sors for statistical estimation [6].

3. ROBUST SAMPLING FUNCTIONS

Of interest here is the design of a robust information operator

I : R
n → R

m that samples m pieces of information from

x, i.e., an operator immune to outlier corruption. We propose

the nonlinear weighted myriad filter as such a sampling oper-

ator. As myriad filter estimates are asymptotically light–tailed

distributed, and the operator converge to a linear filter (sam-

pling process) as a limiting case [7], standard Gaussian/linear

sampling–derived reconstruction algorithms can be applied to

the (robust) measurements.

Definition 4 Let Φ ∈ R
m×n be a random measurement ma-

trix and φij its ij–th entry. The myriad projections are defined
as

fK(φi, x) = ai · myriad(K; |φij | ◦ sgn(φij)xj)|nj=1 (6)

where ai =
∑n

j=1 |φij | is a scaling factor introduced to pre-
serve the amplitude of the measurements.

K is known as the linearity parameter and plays an im-

portant role in the filtering or sampling process, especially

in regards to outlier rejection and asymptotic (linear) behav-

ior [7].

Property 1 In the limit as K → ∞, the weighted myriad
measurement reduces to a linear projection on to φi, i.e.,

lim
K→∞

fK(φi, x) =
n∑

j=1

φijxj . (7)

The parameter K controls a tradeoff between robust perfor-

mance and linear fidelity. That is, large K values lead to

highly linear projections, but at the cost of less resilience to

outliers. Conversely, small K values yield robust operation,

but a measurement process that, especially as K → 0, is

highly nonlinear. Experimental results show that good per-

formance is achieved in both Gaussian and impulsive envi-

ronments by a linearity parameter, which is fundamentally

related to the scale of the process, set to a value in the neigh-

borhood of the process Median Absolute Deviation (MAD).

An observation to make is that when the signal is sparse in the

canonical basis and sparse–like impulsive noise is added di-

rectly, the signal and noise become undistinguishable, unless

the noise has significantly larger amplitude.
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4. ROBUST RECONSTRUCTION ALGORITHMS

Consider next the case of sampling noise. The objective in

this case is the design of robust reconstruction algorithms,

A : R
m → R

n, that that produce fair signal reconstructions

from a small set of measurements. Let xo ∈ R
n be an s–

sparse signal and Φ ∈ R
m×n a measurement matrix. The

measurement model is y = Φxo + z, where z is white addi-

tive noise with impulsive behavior. To estimate x0 from y we

propose the following non–linear optimization problem:

min
x∈Rn

‖x‖1 s. t. ‖y − Φx‖LL2,γ ≤ ε. (8)

The following result presents an upper bound for the recon-

struction error of the proposed estimator.

Lemma 1 Assume δ2s <
√

2 − 1. Then for any signal xo

such that |T0| ≤ s, where T0 = supp(xo), and observation
noise z with ‖z‖LL2,γ ≤ ε, the solution to (8), denoted as x∗,
obeys the following bound

‖x∗ − xo‖2 ≤ Cs · γ ·
√

m(e2ε − 1), (9)

where the constant Cs depends only on δ2s.

Proof outline: Proof of lemma 1 follows directly from estab-

lishing a relationship between the LL2 norm and the L2 norm

and the results of Theorem 1.2 in [5].

Notably, γ controls the robustness of the employed norm

and ε the radius of the feasibility set LL2 ball. Assuming a

standard Cauchy model for the noise, with scale parameter σ,

E‖z‖LL2,γ = mE log{1+γ−2z2
i } = 2m log(1+γ−1σ). We

use this value for ε and set γ as MAD(y).
Debiasing is achieved through robust regression on a sub-

set of indexes of x̂ using the Lorentzian norm. The subset

is defined as I = {i : |x̂i| > α}, α = λmaxi |x̂i|, where

0 < λ < 1. Thus x̃I ∈ R
d is defined as

x̃I = arg min
x∈Rd

‖y − ΦIx‖LL2,σ (10)

where d = |I|. The final reconstruction, after the regression

(x̃) is defined as x̃I for indexes in the subset I and zero outside

I . This algorithm is referred to as Lorentzian BP.

5. EXPERIMENTAL RESULTS

Numerical experiments illustrate the effectiveness of myriad

measurements and Lorentzian BP as robust techniques for

CS. All experiments utilize synthetic s-sparse signals in a

Hadamard basis, with s = 8 and n = 1024. The nonzero co-

efficients have equal amplitude, equiprobable sign, randomly

chosen position, and average power fixed to 0.78. Gaussian

sensing matrices are employed with m = 128. Two hundred

repetitions of each experiment are averaged and reconstruc-

tion SNR is used as the performance measure.

5.1. Observation Noise Results

Consider first experiments validating the use of myriad pro-

jections as robust sampling functions. We start with an exam-

ple of a single impulse added to the original signal, thus show-

ing the outlier rejection property of myriad measurements.

The amplitude of the impulse is 106 and the reconstruction is

performed using OMP for both linear and myriad projections.

The reconstruction SNR is -81.61dB for the linear projections

and 34.30dB for myriad projections (K = MAD(x) = 6.4).

Results are summarized in Fig. 1 (Left).

Next, we compare myriad measurements, with varying

linearity parameter K , to linear measurements in the noise-

less case. BP and OMP reconstructions are used for both

myriad and linear measurements. Results are summarized in

Fig. 1 (Middle). Notably, myriad measurements yield fair re-

constructs in the noiseless case (as K → ∞). Having es-

tablished the applicability of myriad measurements in even

noiseless cases, we now address the more demanding heavy–

tailed environments. Specifically, Fig. 1 (Right) presents re-

sults for α–stable noise corruption, with different values of α
and fixed scale parameter γ = 0.1. As K → 0, performance

degrades because myriad projections tend to a selection type

estimator. As K increases, linearity and performance increase

until maximum performance is achieved. Beyond this point,

performance decreases due to loss of robustness. Note that

the optimal K is largely independent of α, with α = 2 rep-

resenting the Gaussian special case in which performance is

independent of K beyond the fixed minimum point.

5.2. Sampling Noise Results

Lorentzian BP is derived from Cauchy statistics. We there-

fore present experiments comparing Lorentzian BP with BPD

and OMP under Cauchy sampling noise. The Cauchy scale

parameter, σ, is varied from 10−3 to 10, resulting in a varia-

tion of the geometrical SNR [7] from 28.9321 dB to -11.0679

dB. As expected, Lorentzian BP outperforms both BPD and

OMP since it is optimal for Cauchy statistics, Fig. 2 (Left). As

perhaps a more realistic scenario, consider a mixed noise en-

vironment, e.g., p–Gaussian. We set the Gaussian component

variance to σ2 = 10−2, resulting in an SNR of 18.9321 dB

when p = 0. The amplitude of the outliers is set as δ = 103

and p is varied from 10−3 to 0.5, Fig. 2 (Middle). The results

demonstrate that Lorentzian BP outperforms BPD and OMP.

Moreover, the Lorentzian BP results are stable over a range

of contamination factors p, including contaminations up to

5% of the measurements, making Lorentzian BP a desirable

method when measurements are lost or erased.

The final experiment explores the behavior of Lorentzian

BP in very impulsive environments. We compare again against

BPD and OMP, this time with α–Stable sampling noise. The

scale parameter of the noise is set as σ = 0.1 for all cases and

the tail parameter, α, is varied from 0.2 to 2, i.e., very impul-

sive to the Gaussian case, Fig. 2 (Right). For small values of
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Fig. 1. Comparison of linear and myriad projections. L: Single outlier, M: Noiseless case, R: α-S environment.
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Fig. 2. Comparison of Lorentzian BP in impulsive environments. L: Cauchy, M: Contaminated Gaussian, R: α-Stable.

α, all methods perform poorly, with Lorentzian BP yielding

the most acceptable results. Beyond α = 0.8, Lorentzian BP

produces faithful reconstructions with a SNR greater than 20

dB, and often 30 dB greater than BPD and OMP results. It is

of notice that when α = 2 (Gaussian case) the performance

of Lorentzian BP is comparable with that of BPD and OMP.

6. CONCLUSIONS

This paper presents robust sampling and reconstruction meth-

ods for sparse signals in impulsive environments. Myriad pro-

jections are proposed as sampling operators to address prob-

lems with impulsive observation noise. Properties of the pro-

posed sampling function are analyzed, and it is noted that

reconstruction performance depends on a linearity parame-

ter, K , which can be adapted to the signal and noise envi-

ronment. Importantly, myriad projections can be used with

standard Gaussian–derived reconstruction algorithms. To ad-

dress the problem of heavy–tailed sampling noise, Lorentzian

basis pursuit is proposed. A reconstruction bound is derived

that depends on the noise strength and a tunable parameter

of the Lorentzian norm. Methods to estimate the adjustable

parameters in the sampling functions and reconstruction al-

gorithms are proposed, although computation of their optimal

values remains an open question. Thus Myriad projections

and Lorentzian BP offer a robust framework for CS in heavy–

tailed environments, with performance comparable to existing

methods in less demanding light–tailed environments.
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