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ABSTRACT

In this paper we consider the problem of sampling far be-

low the Nyquist rate signals that are sparse linear superposi-

tions of shifts of a known, potentially wide-band, pulse. This

signal model is key for applications such as Ultra Wide Band

(UWB) communications or neural signal processing. Follow-

ing the recently proposed Compressed Sensing methodology,

we study several acquisition strategies and show that the ap-

proximations recovered via �1 minimization are greatly en-

hanced if one uses Spread Spectrum modulation prior to ap-

plying random Fourier measurements. We complement our

experiments with a discussion of possible hardware imple-

mentation of our technique.

Index Terms— Compressive sampling, compressed sens-

ing, pulse trains, Ultra Wide Band, shift-invariant dictionary

1. INTRODUCTION

For many years, signal acquisition systems have been based

on the Nyquist-Shannon sampling theorem that states that the

number of samples needed to recover a signal without error

is twice the bandwidth. Recently, the emerging field of com-
pressive sensing (CS) has given a fresh look at data acquisi-

tion: the number of required measurements needed to recon-

struct a signal without error depends on its sparsity and not on

its bandwidth [1, 2, 3]. Hence, if the signal has a very sparse

representation on some basis, or more generally on some dic-

tionary [4], it is possible to sample it using very few, linear

measurements.

Although the compressive sensing theory is flourishing, it

is not still a completely mature field and important theoretical

and practical questions remain to be solved. When the signal

is a sparse train of Diracs, it was proved in the seminal paper

of Candès and Tao [2] that it can be sampled efficiently using

a small random subset of its Fourier coefficients. More gener-

ally, if the signal has a sparse representation on an orthonor-

mal basis, it is known that a fairly large class of random ma-

trices can be used for obtaining compressive samples. The in-

terested reader is referred to the introductory review paper [5]
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for more information. In the general case where the sparsify-

ing system is a dictionary (a non necessarily tight frame) the

results are themselves quite sparse, though, and it is not clear

what sensing matrices should be used. Likewise, most results

in CS are expressed in terms of the number of measurements

needed to approximate the coefficients of the signal’s sparse

representation. But as we shall see below, there are many situ-

ations where a recovery algorithm can fail approximating the

coefficients and still yield very precise approximations of the

signal itself.

In this paper we concentrate on signals that are sparse on

a dictionary made of all shifts of a fixed, known, waveform or

pulse. This model is introduced and discussed in Section 2.

We then study in Section 3 several measurement strategies

used for compressively sampling these signals. Our main

quality metric is the signal-to-noise ratio and we emphasize

why this constraint has a strong influence on practical results.

In particular, we design and discuss a novel sensing strategy

based on pre-modulating the signal with a spread-spectrum

sequence followed by random sampling in the Fourier do-

main. Section 4 contains ample experimental evidence that

this strategy significantly outperforms other classical com-

pressive sampling scenarios such as pure random Fourier

sampling or gaussian measurements. In Section 5 we discuss

how our scheme can be adapted to meet the requirements

of potential hardware implementation and show that these

modifications do not significantly degrade our results. Our

approach bears several similarities with recent papers on

Analog-to-Information conversion. In particular, [8] intro-

duced random sampling of wide band multi-hop signals and

[9] used the idea of random demodulation which is close in

spirit to our spread spectrum pre-modulation.

2. SIGNAL MODEL

Throughout this paper we will denote by x a real valued

N -dimensional signal, i.e x ∈ R
N . We wish to record few,

say M with M � N , linear measurements of our signals

and we thus model this sampling process by a measurement

matrix Φ, with Φ ∈ R
M×N . We collect these samples in

the M -dimensional vector y = Φx. Many papers focus on

signal models where x is a sparse vector or has a sparse rep-
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resentation on an orthogonal basis. In this work however, we

are motivated by signals which are linear superposition of K
time-shifted pulses :

x[n] =
K−1∑

k=0

αkψ[n − nk],

where the mother pulse ψ has a limited support compared

to N . This type of signal model is of particular interest in

applications such as Ultra Wide Band communications [6]

or bio-sensing [7]. In matrix form, our signals obey a sparse

synthesis model, x = Ψα, where α is a sparse vector of

coefficients, ‖α‖0 = K � N , and the synthesis dictionary

Ψ ∈ R
N×N . Moreover, the shift-invariant nature of our prob-

lem imposes that Ψ is a circulant matrix whose columns are

shifted replicas of the mother pulse. It is very convenient to

write Ψ = F ∗ΛF , where F is the column normalized DFT

matrix 1 and Λ is a diagonal matrix with diag(Λ) = Fψ. It

has to be noted that our dictionary Ψ is not an orthogonal ba-

sis2 and that we impose no specific restriction on the pulse ψ.

With these notations, our compressive sampling problem can

be formulated as follows. We would like to collect M < N
measurements of our signal y = Φx = ΦΨα such that it is

possible to reconstruct a good approximation of the original

signal x. In this paper, the quality measure is the output

Signal-to-Noise Ratio (SNR) :

SNRout(x, x̂) = −20 log10 ‖x − x̂‖2/‖x‖2. (1)

This seemingly natural choice has a drastic influence on the

way we present our results. Whereas most research papers in

compressive sensing will discuss the recovery of the sparse

vector α, exact recovery has in fact very little importance for

us. Imagine indeed that for a given x we would recover all

pulses up to a little time shift of each pulse. This would

mean that we would not have recovered α at all. Yet, since

our pulses are waveforms and not perfect spikes, the recon-

structed signal would be very close to the original one ! In

other words, we do not care about perfect identification of the

support of the sparse vector α, instead what really matters for

us is the SNR (1).

One of the difficulties with compressed sensing is that

there are many possible algorithms to recover the signal from

the measurements. One first restriction is that we need to se-

lect an algorithm that does signal approximation and that is

resilient to noise added to the signal x or to the measurements

y. We have tested several algorithms and decided to focus on

the Basis Pursuit Denoising framework, i.e solving the fol-

lowing optimization problem :

min ‖α‖1 subject to ‖ΦΨα − y‖2 ≤ σ. (BPDNσ)

In all our experiments we have used the SPGL13 solver in

1The matrix F used throughout this paper has unit 2-norm columns, so

the usual N -by-N DFT matrix is actually
√

N · F .
2Even if Ψ ∈ R

N×N , the span of its columns is smaller than R
N .

3http://www.cs.ubc.ca/labs/scl/spgl1/

combination with the SPARCO toolbox4 for its handy syntax

for designing sensing operators.

3. MEASUREMENT STRATEGIES

Given our particular model, the signals we are interested in

are convolutions of a spike train with the mother pulse ψ.

Since random Fourier measurements are close to optimal for

compressive sampling of spike trains, one may be tempted to

reduce our problem to this ideal case. Indeed, let us define the

following measurement matrix :

ΦI = RFF ∗Λ−1F, (2)

where R is the sub-sampling operator : a M -by-N matrix

filled up with zeroes except one element on each row that is

equal to N/M and such that there is at most one non-zero el-

ement on each column. With this normalization, the matrix

RF selects M rows of F and has unit norm columns. The

effect of this measurement matrix is to first invert the convo-

lution with the pulse and then try to recover the spike train

α. Applying (2) to one of our signals indeed results in the

following sampling strategy :

y = ΦIΨα = (RFF ∗Λ−1F )(F ∗ΛF )α = RFα, (INV)

which is simply standard Fourier sub-sampling of α. There

are strong limits to this line of thought, though. For nothing

guarantees that the inverse convolution is well-conditioned :

Λ can even have zeroes. This technique is thus, unsurpris-

ingly, highly sensitive to noise as illustrated on Figure 1: the

amount of measurements M needed to achieve a 30dB SNR

reconstruction increases rapidly as noise is added to the sig-

nal. The amount of noise is controlled by the input SNR , i.e.

SNRin = −20 log10 ‖n‖2/‖x‖2, which, in this experiment,

varied between SNRin = +∞ (no noise) and 40 dB.

In a sense, the previous measurement strategy fails be-

cause it wastes measurements : imagine, schematically, that

Λ is zero on some intervals in the Fourier domain. The Fourier

samples selected by the matrix R will have a non-negligible

probability to fall in one of these intervals and will therefore

bring no information about the signal. Clearly, what we need

is a way to ensure that every measurement counts, i.e we need

to make sure that the signal to which we apply the Fourier

sub-sampling matrix RF occupies the full spectrum. We thus

propose as alternative strategy to pre-modulate the input sig-

nal with a spread spectrum sequence p[n]. There are many

good such sequences, some (pseudo)-random, some deter-

ministic and it is behind the scope of this paper to describe

the full theory of spread spectrum techniques. It should be

noted, though, that we tested several sequences and observed

that the results do not vary significantly. Our proposed sens-

ing strategy is thus the following :

y = ΦSΨα = RFPΨα, (SPREAD)
4http://www.cs.ubc.ca/labs/scl/sparco/
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Fig. 1. Probability of reaching an output SNR greater than 30 dB
as a function of the over-sampling ratio M/K. The results were
obtained by drawing at random 1000 signals of length N = 1024
and sparsity K = 80. The number of measurements was varied
from 2K to N − 1.

where RF is the Fourier sub-sampling matrix described

above and P is a diagonal matrix with diag(P ) = p.

4. EXPERIMENTAL RESULTS

In order to evaluate the performance of the SPREAD sam-

pling strategy, it is important to compare it to other measure-

ment matrices. In our experiments we systematically com-

pared with the INV strategy described above and with two

classical measurement matrices :

y = ΦF Ψα = RFΨα, (FOURIER)

which is the traditional Fourier sub-sampling, and

y = ΦGΨα = GΨα (GAUSS)

where G is a M -by-N matrix of independent centered gaus-

sian variables [5]. The mother pulse ψ[n] defining Ψ has been

set to a truncated first derivative of Gaussian with 17 non-zero

elements.

Our first experiment consists in evaluating the stabil-

ity of the sampling strategy with respect to the amount

of noise added to the signal, i.e the measurements record

y = Φ(x + n), where n is centered gaussian noise and Φ
is set to one of the sensing strategies described above. The

input SNR varied between -10 dB to 60 dB. The input signal

had length N = 1024 and sparsity K = 15. We gathered

M = 7K � 100 measurements and measured the output

SNR. The same experiment was repeated for all sampling

strategies (INV, FOURIER, GAUSS and SPREAD) and the

results were averaged over 1000 randomly simulated input

signals5. The outcome, displayed in Figure 2, clearly shows

the attractiveness of the SPREAD technique. First, the results

5K locations were selected randomly in α and filled with random Gaus-

sian values.

are always better than the other three measurement matrices.

At low input SNR, the INV methodology is clearly the worst

one as explained before, while GAUSS and FOURIER be-

have similarly. As the input SNR get higher, INV catches up

with FOURIER and GAUSS: as we already know, FOURIER

wastes measurements and once the effect of noise disappears

the reconstruction quality stalls evidently.

10 0 10 20 30 40 50 60
20

10

0

10

20

30

40

50

60

SNR
in

 (dB)

S
N

R
ou

t (
dB

)

 

 
Fourier + Inverting
Gaussian
Fourier
Fourier + Spread spectrum

INV
GAUSS
FOURIER
SPREAD

Fig. 2. Output SNR as a function of input SNR averaged over 1000
signals of length N = 1024 drawn at random. The sparsity was
fixed at K = 15 and the number of measurements at M = 7K.

Our second experiment is aimed at testing how many mea-

surements we need to achieve a given output SNR. More pre-

cisely, we randomly simulated signals of length N = 1024
and varied the sparsity K between 10 and 100. The input

SNR was fixed at 30 dB. For every K, and for all sampling

strategies, we then recorded how many measurements were

needed, in average over all signals, to achieve an output SNR

greater than 25 dB. Figure 3 shows the results in terms of the

over-sampling factor M/N versus the relative sparsity K/N .

One notices that over-sampling diminishes rather quickly and,

for a quite realistic 10% sparsity, it is roughly of the order of

4K.

5. HARDWARE PERSPECTIVE

The previous set of experiments clearly shows the interest

of the SPREAD strategy for compressive sampling of pulse

trains signals. Our experiments and findings were carried out

in a purely digital setting, though, while clearly this technique

is aimed at sampling analog signals. In other words, for a

mother wideband pulse ψ(t), the ideal analog model is in fact

x(t) =
∑K−1

k=0 αkψ(t− tk), on a given time interval of length

Δt. In this case, one would like to keep the whole signal pro-

cessing chain as long as possible within the analog domain,

and only manipulate sub-Nyquist digital samples. Looking

towards this perspective, let us streamline how the SPREAD

strategy can be modified to manipulate analog signals in an

idealized analog architecture (Fig. 4).

First, the spread spectrum sequence will have to be an

analog signal p(t). The pre-modulation x(t) × p(t) can be
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Fig. 3. Over-sampling ratio M/K as a function of the relative spar-
sity M/N for the SPREAD strategy. In this experiment, M is the
average number of measurements needed to reach an output SNR
greater than 25 dB. In all runs, the input SNR was fixed at 30 dB.
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Fig. 4. Possible Analog Architecture.

achieved by flipping (at Nyquist rate) the polarity of the in-

put signal using (pseudo)-random or deterministic strategies

which can be implemented very fast in analog electronics [9].

Second, the Fourier sub-sampling operator, which would re-

quire a large amount of very finely tuned analog band-pass

filters, is replaced by the more analog friendly Hadamard

transform: the pre-modulated signal would be multiplexed

M times analogically and each replica multiplied by a ran-

domly selected Hadamard sequence6 Hr(i)(t), where r(i)
models the ith random selection. The output of each branch

is then accumulated analogically by low-pass filtering (LF) to

form, by time sampling every Δt seconds, the corresponding

scalar product yi(nΔt) =
∫ (n+1)Δt

nΔt
Hr(i)(t) p(t) x(t) dt. In

this way, M measurements are computed in parallel over a

time frame Δt of the original signal. One of the issues to un-

derstand with this modified scheme is just how sensitive the

SPREAD strategy would be if one trades the Fourier trans-

form for the Hadamard transform. We ran simulations, using

the settings that generated Figure 2 but replaced the DFT ma-

trix F by the corresponding Hadamard matrix. Let us call this

new strategy H-SPREAD. The outcome is shown on Figure 5

6Using the same polarity flipping trick for the analog multiplication, the

Hadamard sequences being composed also of ±1.

where we compare SPREAD, H-SPREAD and GAUSS. Al-

though a small degradation is observed, H-SPREAD behaves

almost exactly like the GAUSS strategy, although the latter

would not be easily implemented in hardware. The modified

sampling technique thus shows really promising potential for

a compressive sampling architecture that would operate as

much as possible in the analog domain.
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Fig. 5. Comparison of the SPREAD, H-SPREAD and GAUSS sam-
pling strategies. The settings are the same as those used in Figure 2.
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