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ABSTRACT

In this paper we model the components of the compressive sensing
(CS) problem using the Bayesian framework by utilizing a hierar-
chical form of the Laplace prior to model sparsity of the unknown
signal. This signal prior includes some of the existing models as spe-
cial cases and achieves a high degree of sparsity. We develop a con-
structive (greedy) algorithm resulting from this formulation where
necessary parameters are estimated solely from the observation and
therefore no user-intervention is needed. We provide experimental
results with synthetic 1D signals and images, and compare with the
state-of-the-art CS reconstruction algorithms demonstrating the su-
perior performance of the proposed approach.

Index Terms— Bayesian methods, compressive sensing, in-
verse problems, sparse Bayesian learning, relevance vector machine
(RVM).

1. INTRODUCTION

Compressive sensing (or sampling) has become a very active re-
search area in recent years due to its interesting theoretical nature
and its practical utility in a wide range of applications. Let w be an
N × 1 sparse signal, i.e., most of its coefficients are zero. Consider
the following acquisition system

y = Φw + n, (1)

where M × 1 linear measurements y of the original unknown
signal w are taken with an M × N measurement matrix Φ =
[φ1, φ2, . . . , φN ], with M � N and n representing the acquisition
noise. According to the theory of compressive sensing when the
number of measurements is small compared to the number of signal
coefficients (M � N ), under certain conditions the original sig-
nal f can be reconstructed very accurately by utilizing appropriate
reconstruction algorithms [1, 2].

A common formulation of the reconstruction algorithm is ob-
tained by exploiting the sparsity of w and regularizing the inverse
problem by constraining the lp norm of w, ‖ w ‖p with 0 ≤ p ≤ 1,
that is,

ŵ = argmin
w

{‖ y − Φw ‖22 + τ ‖ w ‖p

}
. (2)

The case with p = 0, where ‖ w ‖0 is the number of nonzero coef-
ficients in w, results in an optimization problem which is NP-hard.
A more common formulation is obtained with the use of the l1 norm
(p = 1). A number of methods have been proposed to solve the
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CS reconstruction problems defined in (2), most of which are exam-
ples of energy minimization methods, including linear programming
algorithms [3, 4] and constructive (greedy) algorithms [5, 6].

The CS reconstruction problem can also be formulated in a
Bayesian framework [7, 8]. In [7], the relevance vector machine
(RVM) proposed in [9] is adapted to the CS problem. Independent
Laplace priors are utilized for each coefficient in an expectation-
propagation framework in [8]. However, the resulting algorithm
is complicated to implement, and all required parameters are not
estimated, but rather left as parameters to be tuned.

In this paper, we also formulate the CS reconstruction problem
from a Bayesian perspective. We utilize a Bayesian model for the
CS problem and propose the use of Laplace priors on the basis coef-
ficients in a hierarchical manner. As will be shown, our formulation
includes the RVM formulation [9] as a special case, but results in
smaller reconstruction errors while imposing sparsity to a higher ex-
tent. We derive an efficient greedy constructive algorithm resulting
from our formulation. The proposed algorithm is fully automated
since all required model parameters are estimated along with the
unknown signal coefficients w. This is in contrast to most of the
proposed methods in the literature which include a number of pa-
rameters to be tuned specifically to the data, which is a cumbersome
process. We will demonstrate with experimental results that despite
being fully automated, the proposed algorithm provides competi-
tive and even higher reconstruction performance than state-of-the-art
methods.

The rest of this paper is organized as follows: We present the
hierarchical Bayesian modeling of the CS problem in Section 2. In
Section 3 we apply the evidence procedure to the CS problem and
propose a constructive reconstruction algorithm. We present experi-
mental results in Section 4 and conclusions are drawn in Section 5.

2. BAYESIAN MODELING

In Bayesian modeling, all unknowns are treated as stochastic quan-
tities with assigned probability distributions. The unknown signal w
is assigned a prior distribution p(w|γ), which models our knowl-
edge on the nature of w. The observation y is also a random process
with conditional distribution p(y|w, β), where β = 1/σ2 is the
inverse noise variance. These distributions depend on the model pa-
rameters γ and β, which are called hyperparameters, and additional
prior distributions, called hyperpriors, are assigned to them.

2.1. Observation (Noise) Model

The observation noise is independent and Gaussian with zero mean
and variance equal to β−1, that is, with (1),

p(y|w, β) = N (y|Φw, β−1) (3)
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A Gamma prior can be placed on β to estimate it. Unfortunately, this
method cannot be used in practice with greedy algorithms since the
reconstruction and, therefore, the estimation of β using this method
are unreliable at early iterations. Due to the under-determined nature
of the compressive sensing problem, once the estimate of β is very
far from its true value, the reconstruction quality is also significantly
affected. Therefore, we fix the estimate of this parameter in the be-
ginning of the algorithm using β = 0.01 ‖ y ‖22 inspired by [4, 7].

2.2. Signal Model

The l1 regularization formulation in (2) with p = 1 is equivalent to
using a Laplace prior on the coefficients w, that is,

p(w|λ) =
λ

2
exp(−λ|w|) (4)

and using a maximum a posteriori (MAP) formulation with (3) and
(4) for τ = λ/β. However, this formulation of the Laplace prior
does not allow for a tractable Bayesian analysis, since it is not con-
jugate to the conditional distribution in (3). To alleviate this, hierar-
chical priors are employed.

As the first stage of a hierarchical model, the following prior is
employed on w

p(w|γ) =
N∏

i=1

N (wi|0, γi), (5)

where γ = (γ1, γ2, . . . , γN ). In the second stage, we use the fol-
lowing hyperpriors on γi

p(γi|λ) = Γ(γi|1, λ/2) =
λ

2
exp

(
−λγi

2

)
, γi ≥ 0, λ ≥ 0 (6)

and finally, we model λ as the realization of a Jeffrey’s hyperprior

p(λ) ∝ 1

λ
. (7)

Based on the above we have [10]

p(w|λ) =

∫
p(w|γ)p(γ|λ)dγ =

∏
i

∫
p(wi|γi)p(γi|λ)dγi

=
λN/2

2N
exp

(
−
√

λ
∑

i

|wi|
)

. (8)

The proposed modeling constitutes a three-stage hierarchical form.
The first two stages (5) and (6) of this hierarchical prior result in a
Laplace distribution p(w|λ) in (8), and the last stage (7) is embed-
ded to calculate λ.

An alternative Bayesian formulation applicable to the CS prob-
lem is the relevance vector machine (RVM) [7, 9] (or sparse
Bayesian learning (SBL) [11]), where separate Gaussian priors
employed on the entries of w. As explained in [8], compared to
this formulation, Laplace priors enforce the sparsity constraint more
heavily by distributing the posterior mass more on the axes so that
signal coefficients close to zero are preferred. Furthermore, the
Laplace prior is also the prior that promotes sparsity to the largest
extent while being log-concave. The log-concavity provides the
very useful advantage of eliminating local-minima since it leads to
unimodal posterior distributions [8].

By combining the stages of the hierarchical Bayesian model,
the joint distribution can finally be defined as p(w, γ, λ, β,y) =
p(y|w, β)p(w|γ)p(γ|λ)p(λ), where p(y|w, β), p(w|γ), p(γ|λ)
and p(λ) are defined in (3), (5), (6), and (7), respectively.

3. BAYESIAN INFERENCE

In this paper we utilize the evidence procedure (type-II maximum
likelihood approach) to perform Bayesian inference. Our inference
procedure is based on the following decomposition

p(w, γ, λ, β | y) = p(w|y, γ, β, λ) p(γ, β, λ|y). (9)

Since p(w|y, γ, β, λ) ∝ p(w,y, γ, β, λ), then p(w|y, γ, β, λ) is
found to be a multivariate Gaussian distribution N (w|μ, Σ) with
parameters

Σ =
[
βΦT Φ + Λ

]−1

, (10)

μ = Σ βΦT y, (11)

with Λ = diag(1/γi).
We now utilize p(γ, β, λ|y) in (9) to estimate the hyperparam-

eters. In the type-II maximum likelihood procedure we represent
p(γ, β, λ|y) by a degenerate distribution where the distribution is
replaced by a delta function at its mode, where we assume that
this posterior distribution is sharply peaked around its mode [12].

Then, using p(γ, β, λ|y) = p(y,γ ,β,λ)
p(y)

∝ p(y, γ, β, λ), we esti-

mate the hyperparameters by the maxima of the joint distribution
p(y, γ, β, λ), or equivalently its logarithm, which is obtained by

L = log

∫
p(y|w, β) p(w|γ) p(γ|λ) p(λ) dw

= −1

2
log |C| − 1

2
ytC−1y + (N − 1) log λ− λ

2

∑
i

γi (12)

with C =
(
β−1I + ΦΛ−1Φt

)
. Maximizing L with respect to λ

results in the following update equation

λ =
N − 1∑

i γi/2
. (13)

Similarly, the hyperparameters γ can be found by maximizing L.
To promote sparsity and to decrease the computational require-

ments, only a single γi will be updated at each iteration of the algo-
rithm instead of updating the whole vector γ . The update of a single
γi can be found by maximizing L when all components of γ except
γi are kept fixed. Let us express matrix C in (12) as

C = β−1I +
∑
j �=i

γjφjφ
t
j + γiφiφ

t
i = C−i + γiφiφ

t
i, (14)

where C−i denotes that the contribution of the ith basis is not in-
cluded. Using the Woodbury identity in (14) we obtain

C−1 = C−1
−i −

C−1
−i φiφ

t
iC
−1
−i

1/γi + φt
iC
−1
−i φi

(15)

and using the determinant identity we obtain

|C| = |C−i||1 + γi φt
iC
−1
−i φi| . (16)

Substituting the last two equations in (12) and treating L as a func-
tion of γ only, we obtain

L(γ) = −1

2

[
log |C−i|+ ytC−1

−i y +
λ

2

∑
j �=i

γj

]

+
1

2

[
log

1

1 + γi si
+

q2
i γi

1 + γi si
− λγi

]
= L(γ−i) +

1

2

[
log

1

1 + γi si
+

q2
i γi

1 + γi si
− λγi

]
= L(γ−i) + l(γi) (17)
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where qi and si are defined as

si = φt
iC
−1
−i φi, qi = φt

iC
−1
−i y (18)

This way the terms related to a single hyperparameter γi are
separated from others. The maximum ofL(γ), when all components
of γ except γi are kept fixed, is therefore equal to the maximum of
l(γi), and it is found by taking its derivative with respect to γi and
setting it equal to zero. The optimal value found in this manner is
given by (the derivation is omitted)

γi =

⎧⎨
⎩
−si(si+2λ)+si

√
(si+2λ)2−4λ(si−q2

i +λ)

2λs2
i

if q2
i − si > λ

0 otherwise

(19)
Note that in the case of γi = 0, the corresponding basis φi is pruned
out from the model and μi is set equal to zero. Therefore (19) pro-
vides a systematic method of deciding which basis vectors should be
included in the model and which should be excluded.

Utilizing (19), we obtain an iterative procedure by starting with
an ”empty” model (γ = 0) and iteratively adding/updating/deleting
components. The procedure is summarized below in Algorithm 1.

Algorithm 1 Fast Laplace

1: INPUTS: Φ, y
2: OUTPUTS: w, Σ, γ
3: Initialize all γi = 0, λ = 0
4: while convergence criterion not met do
5: Choose a γi (or equivalently choose a basis vector φi)
6: Update γi using (19)
7: Update Σ and μ
8: Update si, qi

9: Update λ using (13)
10: end while

At step 5 of the algorithm, the candidate γi is selected by cal-
culating each γi and choosing the one that results in the greatest
increase in L(γ) in (17).

Note that unlike other constructive (or greedy) methods such as
OMP [5], StOMP [6], included basis vectors can also be deleted once
they are determined to be irrelevant. This is a powerful feature of the
algorithm, since errors in the beginning of the reconstruction process
can be fixed in later stages by effectively pruning out irrelevant basis
vectors which can drive the algorithm away from the optimal result.

We complete this section by comparing the variance estimates
provided by the RVM with the ones provided by the proposed
method in terms of sparsity. As we have seen the estimate pro-
vided by the modeling using the Laplace distribution is given by
the maxima of l(γi) in (17) whereas the estimate γRVM

i in the RVM
framework corresponds to the case with λ = 0 [13]. The difference
γRVM

i − γL
i can be expressed as

γRVM
i − γL

i =

⎧⎪⎪⎨
⎪⎪⎩

0 if q2
i − si < 0

γRVM
i if 0 ≤ q2

i − si < λ
s2

i +2λq2
i−si

√
s2

i +4λq2
i

2λs2
i

> 0 if q2
i − si ≥ λ

(20)

Therefore, the estimates γL
i using the Laplace prior are always

smaller than the estimates γRVM
i of the relevance vector machine.

Note also that compared to RVM more components will possibly be
pruned out from the model when λ > 0, since the cardinality of

the set {wi} for which q2
i − si > λ is smaller than that of the set

{wi} for which q2
i − si > 0. These observations imply that the

solution obtained by the proposed method is at least as sparse as the
one provided by the RVM. This will also be shown empirically in
Section 4.

4. EXPERIMENTAL RESULTS
In this section we present experimental results with both one-
dimensional (1D) synthetic signals and 2D images to demonstrate
the performance of the proposed method. For the 1D synthetic sig-
nal reconstruction experiments, we generated four different types of
signals of length 512, where 20 coefficients at random locations of
the signals are drawn from five different probability distributions,
and the rest of the coefficients are set equal to zero. The nonzero
coefficients of the sparse signals are realizations of the following
five distributions: 1) Uniform ±1 random spikes, 2) zero-mean unit
variance Gaussian, 3) unit variance Laplace, and 4) Student’s t with
3 degrees of freedom. As the measurement matrix Φ we chose a
uniform spherical ensemble, where the columns φi are uniformly
distributed on the sphere RN . In the experiments we vary the num-
ber of measurements K from 40 to 120 in steps of 5. We added
zero mean white Gaussian noise with standard deviation 0.03 to the
observations.

The reconstruction error is calculated as ‖ ŵ−w ‖22 / ‖ w ‖22,
where ŵ and w are the estimated and true coefficient vectors, re-
spectively. The criterion ‖ L(γk)−L(γk−1) ‖2 / ‖ L(γk−1) ‖2<
10−8 is used to terminate the iterative procedure.

We compare the proposed method (denoted by Laplace) with the
algorithms BCS [7], BP [3], OMP [5], StOMP with CFAR thresh-
olding (denoted by FAR) [6], and GPSR [4]. For all algorithms, their
MATLAB implementations in the corresponding websites are used.
The required algorithm parameters are set according to their default
setups.

Average reconstruction errors of 100 runs are shown in Fig. (1)
for all types of signals. It is clear that the proposed algorithm outper-
forms all other methods in terms of reconstruction error except for
the first signal, for which it provides the second-best performance af-
ter BP. However, BP results in worse performance than other meth-
ods for the rest of the signals. The poor performance of GPSR can
be explained by assuming that the default selection of algorithm pa-
rameters is poor for these types of signals, and its performance is
expected to increase if the optimal parameters can be found by trial-
and-error. Note however that both BCS and the proposed method
do not require parameter tuning. Despite this fact, note that the
proposed method provides the best overall performance among all
methods.

In the second set of experiments, we present a comparison be-
tween the proposed method and the algorithms BP, BCS, and StOMP
with CFAR and CFDR thresholding on a widely used experimental
setup, namely the multiscale CS reconstruction [14] of the Mondrian
image. We adapted the same test parameters as in the SparseLab
package (http://sparselab.stanford.edu), where the number of sam-
ples is N = 4096, the number of measurements are M = 2073,
and the measurement matrices are drawn from a uniform spherical
distribution. The multiscale CS scheme is applied on the wavelet
transform of the image with a ”symmlet8” wavelet with the coars-
est scale 4 and finest scale 6. The parameters of the algorithms BP,
CFAR and CFDR are chosen as in the SparseLab package. As in
the previous experiment, the parameters of BCS and the proposed
method are solely estimated from the measurements.

Since the measurement matrices are random, the experiment is
repeated 100 times and their average is reported. Average recon-
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(a) (b)

(c) (d)

Fig. 1. Number of measurements K vs reconstruction error with
noisy observations for different algorithms. (a) Uniform spikes ±1;
Nonuniform spikes drawn from (b) zero mean unit variance Gaus-
sian, (c) unit variance Laplace, (d) Student’s t with 3 degrees of free-
dom. In (b), (c), and (d) values corresponding to K > 90 are not
shown for clearity as the error rates converged.

struction errors, running times and the number of nonzero com-
ponents in the reconstructed images are shown in Table 1, where
”Linear” denotes linear reconstruction with K = 4096 measure-
ments and represents the best reconstruction performance that can
be achieved. It is clear that although BCS and Laplace have nearly
the same error rate, Laplace is faster and the reconstructed image is
sparser. In fact, Laplace provides the sparsest reconstructed image
among all methods. The CFDR method, although it is the fastest, has
the worst reconstruction error, and the BP method, although it has the
best reconstruction error, has the largest computation time. Laplace
and CFAR are clearly the methods that should be preferred, hav-
ing near-best reconstruction errors and smallest computation times,
where CFAR being slightly faster and Laplace having slightly lower
reconstruction error.

5. CONCLUSIONS
In this paper we formulated the compressing sensing problem from a
Bayesian perspective, and presented a framework to simultaneously
model and estimate the sparse signal coefficients. We proposed the
use of a hierarchical form of Laplace priors on signal coefficients.
We have shown that the relevance vector machine is a special case
of our formulation, and that our hierarchical prior modeling provides
solutions with a higher degree of sparsity and lower reconstruction
errors. We presented a constructive (greedy) algorithm resulting
from our framework which updates the signal coefficients sequen-
tially in order to achieve low computation times and efficiency in
practical problems. The proposed algorithm automatically estimates
the model parameters solely from the observation and does not re-
quire user intervention unlike most existing methods. We demon-
strated that overall, the proposed algorithm results in higher perfor-
mance than most state-of-the-art algorithms.

Table 1. Average reconstruction errors, running times and number of
nonzero components for multi-scale CS reconstruction of the Mon-
drian image.

# Nonzeros Time Error

Linear 4096 - 0.13325

BP 4096 78.254 0.13933

CFAR 1139.2 13.88 0.14971

CFDR 2177.3 7.86 0.20867

BCS 1174.2 18.343 0.1443

Laplace 1078.7 15.372 0.1451
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