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ABSTRACT

Sparse modeling of signals has recently received a lot of attention.
Often, a linear under-determined generative model for the signals of
interest is proposed and a sparsity constraint imposed on the rep-
resentation. When the generative model is not given, choosing an
appropriate generative model is important, so that the given class
of signals has approximate sparse representations. In this paper we
introduce a new scheme for dictionary learning and impose an addi-
tional constraint to reduce the dictionary size. Small dictionaries are
desired for coding applications and more likely to “work” with sub-
optimal algorithms such as Basis Pursuit. Another benefit of small
dictionaries is their faster implementation, e.g. a reduced number of
multiplication/addition in each matrix vector multiplication, which
is the bottleneck in sparse approximation algorithms.

Index Terms— Sparse Approximation, Dictionary Learning,
Majorization Method, Sparse Coding

1. INTRODUCTION

Let Y = {y(i) : 1 ≤ i ≤ L} be a given set of training samples
and X = {x(i) : 1 ≤ i ≤ L} be the corresponding coefficient
vectors. Yd×L and XN×L are the matrices generated by using the
elements of Y and X as the column vectors, respectively. The dic-
tionary learning problem can be formulated as follows. Given Y,
find a “dictionary“ matrix D and a coefficient matrix X, such that
the error ε = Y−DX is small andX is sparse. This is a challenging
problem and researchers from different fields have introduced algo-
rithms to solve it approximately [1–4]. Regardless of the sparsity
measure, dictionary learning is a non-convex optimization problem
and a locally optimum dictionary is often found [5]. Various addi-
tional constraints have been recently imposed on the dictionaries to
constrain the dictionary search space. These constraints may come
from a priory information about the dictionary [6,7] or help to attain
a fast implementation [8, 9].

One application of sparse approximation is sparse coding. In
conventional sparse coding, indices of the selected columns of D,
called ”atom“, and the associated coefficients are coded separately
[10–12]. The coding cost of specifying the selected atoms is re-
duced by reducing the size of the dictionary. Therefore minimum
size dictionaries are more desirable for a coding purpose. Also, when
the size of the learnt dictionary reduces, matrix-vector multiplication
can be done faster.

The application of parsimonious dictionary learning is not limit-
ted to coding. Dictionary size selection is also a challenging problem
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in the sparse approximation of real signals. When the size of the dic-
tionary is unknown, one can start with a oversized dictionary and
find the minimum size learnt dictionary.

We here introduce a framework for parsimonious dictionary
learning. The problem formulation is followed by a practical algo-
rithm to find an approximate solution. We show that the proposed
framework gives promising results in dictionary recovery. We then
show that the learnt dictionary has advantages over the currently
used dictionaries for sparse coding.

2. PARSIMONIOUS DICTIONARY LEARNING
FORMULATION

Dictionary learning can be formulated as the minimization of a joint
objective function based on D and X.

min
D,X

φ(D,X) s.t. D ∈ D ;

φ(D,X) = ||Y −DX||2F + λJp,p(X),
(1)

where ‖.‖F is the Frobenius-norm, D is a dictionary in an admis-
sible set D and Jp,p is the penalty term over the diversity of the
coefficients,

Jp,q(X) =
X
i∈I

[
X
j∈J

|xij |
q ]p/q, (2)

where p ≤ 1. λ is a Lagrangian multiplier. In this paper we use
p = 1 which makes the minimization over X convex, if D is fixed.
Various admissible sets have been used for dictionary learning (e.g.
see [5]). We use bounded column-norm and bounded Frobenius-
norm sets as the admissible sets to make the dictionary update a con-
vex problem for a fixed X. The bounded column-norm admissible
set is defined as follows,

DF = {Dd×N : ||D||F ≤ c1/2
F }, (3)

where cF is a constant. The bounded Frobenius-norm admissible set
is defined by,

DC = {Dd×N : ||di||2 ≤ c1/2
C }, (4)

where di is the ith column of the dictionary D and cC is a constant.
To get a dictionary of minimum size, we now include an additional
penalty on the dictionary size. The new joint optimization problem
is as follows,

min
X,D

φθ,0,∞(D,X) s.t. D ∈ D ;

φθ,0,∞(D,X) = ||Y−DX||2F + λJ1,1(X) + θ‖max
i
|{D}i,j |‖0.
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where ||.||0 is an operator that counts the number of non-zero el-
ements, and is therefore related to the size of the dictionary, and
{D}i,j is the element (i, j) of D. Because φθ,0,∞ is non-convex
and non-continuous, we replace the objective function with a relaxed
version as follows,

min
X,D

φθ,1,q(D,X) s.t. D ∈ D ;

φθ,1,q(D,X) = ||Y −DX||2F + λJ1,1(X) + θJ1,q(D
T ) (5)

where q ≥ 1. By selecting q = 1, the objective function penalizes
any non-zero element of the dictionary. With some changes, this
would be useful for sparse dictionary learning as introduced in [13].
When q > 1, the objective function penalizes the number of atoms
more than the sparsity of the atoms which is our aim in this paper.
The parameter θ is then the regularization parameter which controls
the sparsity of the dictionary. By increasing θ, one can get a smaller
dictionary.

This objective function can be minimized using alternating min-
imization. Although this method is guaranteed to reduce the objec-
tive in each step, the objective function is not convex and has various
local minima. The proposed method optimizes X and D alternately
keeping the other parameter is fixed. In this framework, the non-
convex optimization problem is broken into two convex optimiza-
tion problems, which can be solved using any convex optimization
method. Here we use a majorization minimization method.

3. MAJORIZATIONMETHOD FOR SPARSE
APPROXIMATION AND DICTIONARY UPDATE

We use the majorization minimization method [14] to minimize (5).
In the majorization method, the objective function is replaced by
a surrogate objective function which majorizes it and can be mini-
mized easier. Here we are interested in the surrogate functions in
which the parameters are decoupled, so that the surrogate function
can be minimized element-wise.

A function ψ majorizes φ when it satisfies the following condi-
tions,

φ(ω) ≤ ψ(ω, ξ), ∀ω, ξ ∈ Υ

φ(ω) = ψ(ω,ω), ∀ω ∈ Υ,
(6)

where Υ is the parameter space. The surrogate function has an addi-
tional parameter ξ. We choose this parameter as the current value of
ω and find the optimal update for ω.

ωnew = arg min
ω∈Υ

ψ(ω, ξ). (7)

We then update ξ with ωnew. The algorithm continues until we find
an accumulation point. In practice the algorithm could be terminated
when the distance between ω and ωnew is less than a threshold.

There are different ways to derive a surrogate function. Jensen’s
inequality and Taylor series have often been used for this pur-
pose [14]. When D or X are fixed, the surrogate function for the
quadratic part of (5) can be found [15] by adding πX(X,X[n−1]) :=
cX ||X −X

[n−1]||2F − ||DX −DX
[n−1]||2F or πD(D,D[n−1]) :=

cD||D − D
[n−1]||2F − ||DX − D

[n−1]
X||2F respectively, where

cX > ||DT
D|| and cD > ||XT

X|| are two constants and ||.|| is
defined as the spectral norm. X[n−1] and D

[n−1] are the old values
of X and D respectively which are the auxiliary parameter ξ in the
surrogate objective. In the next two subsections, we show how this
method can be used for optimizing (5) in an alternating minimization
scheme.

3.1. Matrix Valued Sparse Approximation

In this subsection we briefly show how the majorization method is
used for matrix valued sparse approximation. We add πX to (5) and
minimize the surrogate objective based on X, followed by updating
X

[n−1] with the new value of X. Let A := 1
cX

(DT
Y + (cXI −

D
T
D)X[n−1]). It can be shown that (7) can be solved, for the pro-

posed surrogate objective, by shrinking elements in A, as follows:

{X[n]}i,j =

(
ai,j − λ/2 sign(ai,j) λ/2 < |ai,j |

0 otherwise.
(8)

The convergence of this algorithm is studied in [16] for vector val-
ued coefficients. This proof can also be extended to matrix valued
problems.

3.2. Dictionary Update

The objective function is convex when X is fixed. For fixed X, to
minimize over D, the joint sparsity penalty is decoupled by adding
πD to the objective function,

ψθ,1,q(D,D[n−1]) = φθ,1,q(D,X) + πD(D,D[n−1]). (9)

By separating the terms depending on D, the surrogate cost can be
written as,

ψθ,1,q(D,D[n−1]) ∝ cstr{DD
T − 2BD

T}+ J1,q(D
T ) (10)

where B := 1
cD

(YX
T + D

[n−1](cDI − XX
T )). The dictionary

constraint is introduced into the objective function using Lagrangian
multipliers. Let dj and bj be the jth columns of D and B respec-
tively. The objective function, using the bounded column-norm (4),
can be written as,

ψθ,1,q(D,D[n−1]) ∝
X

j

(tr{τ 2
j djd

T
j − 2bjd

T
j }+ θ

cD
||dj ||q)

=
X

j

(τ 2
j d

T
j dj − 2dT

j bj + θ
cD
||dj ||q)

∝
X

j

((τjdj − bj/τj)
2 + θ

cDτj
||τjdj ||q)

=
X

j

ψ
θ

cDτj
q (τjdj ,bj/τj)

(11)

whereψα
q (v,w) = (w−v)2+α||v||q , τj = (1+γj/cD)1/2 and γj

are the Lagrangian multipliers. To minimize (11), we can minimize
the first term by minimizing ψα

q for each dj independently. With the
help of two lemmas presented in [17], we can find the optimum of
ψα

q based on dj for q = 1, 2 and ∞. The minimum of ψα
q (v,w)

based on v [17, Lemma 4.1] is,

min
v

ψα
q (v,w) = w −P

q′

α (w) (12)

where P
q′

α is the orthogonal projection onto the dual norm ball with
radius w and the dual norm is defined as ||.||q′ with 1/q′ + 1/q =
1. This minimization problem can be solved analytically for some
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Fig. 1. Exact recovery with the constrained column-norm.

q [17, Lemma 4.2]. In this paper we derive the dictionary update
formula for q = 2.

b
∗
j = arg min

dj

ψ
θ

csτj
2 (τjdj ,bj/τj)

=

(
1

τ2
j

(1− θ
2cD ||bj ||2

) bj
θ

2cD
< ||bj ||2

0 otherwise .

(13)

When all γj are non-negative, for any inadmissible b
∗
j with τj =

1 (γj = 0), one can decrease ||d∗
j ||2 to c

1/2
c by increasing τj to

satisfy the K.K.T conditions. The dictionary update is therefore done
by calculating B followed first by (13) (τj = 1) and secondly by
orthogonal projection onto the convex set (4).

When we are looking for a bounded Frobenius-norm dictionary,
the dictionary update could be derived using a similar approach, us-
ing orthogonal projection onto (3) instead of (4).

4. SIMULATION

We evaluate the proposed method with synthetic and real data. Us-
ing synthetic data with random dictionaries helps us to examine the
ability of the proposed methods to recover dictionaries exactly (to
within an acceptable squared error). To evaluate the performance
on real data, we chose audio signals. We then used the learnt dic-
tionary for audio coding and show improvements in Rate-Distortion
performance compared to coding with classical dictionaries.

4.1. Synthetic Data

A 20 × 40 matrix D was generated by normalizing a matrix with
i.i.d. uniform random entries. The number of non-zero elements
in each of the coefficient vectors was selected between 3 and 7. The
locations of the non-zero coefficients were selected uniformly at ran-
dom. We generated 1280 training samples where the absolute values
of the non-zero coefficients were selected uniformly between 0.2 and
1. We debiased all the sparse approximations by orthogonally pro-
jecting onto the space spaned by atoms with non-zero coefficients.

We assume that the desired dictionary size is unknown but
bounded. The simulations were started with four times overcompete
dictionaries (two times larger than the desired dictionary size). The
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Fig. 2. Exact recovery with the bounded Frobenius column-norm.

dictionary updates were based on the joint sparsity objective func-
tion (5) (with θ = 0.05, p = 1 and q = 2). The average percentage
of exact atom recovery, i.e. absolute inner product of the learnt atom
with one of the atoms in the original dictionary is more than 0.99,
for 5 trials are shown in Fig. 1 and 2. We plotted the percentage
of the exact recovery of the original atoms, regardless of the learnt
dictionary size. In the lower plot, we show the size of dictionary
after 1000 iterations. With this θ we identified the size correctly but
for less sparse signals (higher k) we got less accurate results.

4.2. Parsimonious Dictionary Learning for Sparse Audio Cod-
ing

In this section we demonstrate the performance of the proposed dic-
tionary learning method on audio signals. An audio sample of more
than 8 hours was recorded from BBC radio 3, which plays mostly
classical music. We used the proposed method with the bounded
Frobenius-norm constraint to learn a dictionary based on a training
set of 8192 blocks, each 1024 samples long.

In this experiment, instead of fully optimizing over one param-
eter (X or D) before switching to the other one, we update each
parameter for a small number of iterations and then switch to the
other one. This type of alterante optimization was found to be faster
in practice.

We chose a 2 times overcomplete sinusoid dictionary (frequency
oversampled DCT) as the initialization point and ran the simulations
with different lambda values for 5000 iterations of alternative opti-
mization of (11). The number of appearances of each atom, which
are sorted based on their 2 norms, are shown in Fig. 3. To design
an efficient encoder we only used atoms that were used frequently in
the representations. Therefore we were able to further shrink the dic-
tionary size. In this test we chose a threshold of 40 appearances (out
of 8192) as the selection criteria. This dictionary was used to find
the sparse approximations of 4096 different random blocks, each of
1024 samples, from the same data set. We then encoded the loca-
tion (significant bit map) and magnitude of the non-zero coefficients
separately. In this paper we used a uniform scalar quantizer with a
double zero bin size to code the magnitude. We estimated the en-
tropy of the coefficients to approximate the required coding cost. To
encode the significant bit map, we assumed an i.i.d. distribution for
the location of the non-zero atoms. The same coding strategy was
used to code sparse approximations with a two times frequency over-
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Fig. 3. Number of appearances in the representations of the training
blocks (of size 8192).

complete DCT (the initial dictionary used for learning ) followed by
shrinking based on the number of appearances. For reference we
calculated the rate-distortation of the DCT coefficient encoding of
the same data, using the same method of significant bitmap and non-
zero coefficients coding. The performance is compared in Fig. 4.
In the sparse coding methods, the convex hulls of the rate-distortion
performances calculated with different dictionaries, each optimized
and shrunk for different bit-rates, are shown in this figure. Using the
learnt dictionaries for sparse approximation is superior to using the
DCT or overcomplete DCT for the range of bit-rates shown.

5. CONCLUSIONS

We introduced a formulation for parsimonious dictionary learning.
We have shown how we can solve the dictionary learning problem
approximately, by imposing a penalty on the size of the dictionary,
using a majorization method. A small set of simulations showed that
the algorithm often recovers a dictionary with the correct size. We
then used the learnt dictionary for sparse coding. We showed the
advantages over standard overcomplete and orthogonal dictionaries,
specially at low bit-rate. Although the results are promising, more
investigations are needed to find a method to determine the parame-
ter θ.
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