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Abstract— This paper introduces higher dimensional consen-
sus, a framework to capture a number of different, but, related
distributed, iterative, linear algorithms of interest in sensor
networks. We show that, by suitably choosing the iteration matrix
of the higher dimensional consensus, we can capture, besides
the standard average-consensus, a broad range of applications,
including sensor localization, leader-follower, and distributed
Jacobi algorithm. We work with the concept of anchors and ex-
plicitly derive the consensus subspace and provide the dimension
of the limiting state of the sensors.

Index Terms— Distributed algorithms, Iterative methods,

Distributed control, Networks, Large-scale systems

I. INTRODUCTION

There is a renewed interest in the sensor network community

on consensus algorithms. In consensus, the sensors reach a

common state, in a distributed and iterative fashion with only

local communication and computation. Consensus is iterative

because the information fuses over a sparsely connected sensor

network. Applications for sensor networks include, but are

not restricted to load balancing [1], multi-vehicle control and

navigation [2], flocking [3], sensor localization [4].

Early work includes [5], [6]. Much of the existing work

is focused on average-consensus problems where the goal

is to drive the state of the sensors to the average of their

initial states [7], [8]. Its generalizations and extensions to

random environments, quantized information exchange, gossip

protocols, convergence issues and topology optimization can

also be found in the literature [9], see [10] for a detailed set

of references.

In this paper, we present a general consensus algorithm

that captures average consensus as a special case. We term

this higher dimensional consensus (HDC) algorithms. Our

framework accounts for two types of nodes: anchors [11]

and sensors (in strict sense). Anchors are sensors that do

not update their state and behave as leaders, providing an

appropriate frame of reference specific to the pertinent appli-

cation. Anchors, thus, provide additional degrees of freedom

to the underlying algorithm and form a building block to

generalize consensus algorithms to include in the same set-

up, besides traditional average consensus, applications like

distributed sensor localization [4], solving linear system of

equations using Jacobi algorithms [10], and leader-follower

architectures [10].

Key to our approach is the notion of dimension of the

consensus subspace. We show that the limit state of the sensors

resides in a subspace that can be at most n-dimensional, where

n is the number of the anchors. HDC algorithms also play

an important role in the assimilation of local covariances for

distributed estimators. The estimators are implemented on low-

order local subsystems obtained by spatially decomposing a

large-scale dynamical system [12].

We summarize the rest of the paper. Section II contains

background on distributed algorithms, whereas Section III

gives our formulation of the problem. Section IV discusses

the consensus algorithm in higher dimensions, and Section V

illustrates our approach with specific applications in the leader-

follower scenario. We discuss robustness issues in the presence

of chaotic environment in Sections VI and conclude the paper

in Section VII.

II. BACKGROUND

Consider a network with N sensors. The state of an arbitrary

sensor, l, is denoted by a scalar1, cl. A typical linear, iterative,

distributed algorithm is

cl(t + 1) =
∑

j∈K(l)

υljcj(t), 1 ≤ l ≤ N, (1)

where K(l) denotes the neighboring sensors of sensor l, i.e.,

those sensors that can send information to sensor l, and υlj are

the state-updating coefficients in the linear combinations. The

goal of the linear algorithm (1) is for the state of the sensor

network to converge to

lim
t→∞ cl(t + 1) = f (c1(0), c2(0), . . . , cN (0)) , (2)

where f(·) denotes a particular linear function of the initial

states. For example, f(·) can be the average of the initial

states in the average-consensus problem. In this paper, we look

for more flexibility. This is achieved by introducing anchors,

sensors whose states do not change.

We now write (1) in matrix format. Let c(t) denote the N×1
vector that collects the state of the network at time t, i.e.,

c(t) = [c1(t), . . . , cN (t)]T . (3)

The matrix form of (1) is

c(t + 1) = Υc(t),
= Υt+1c(0), (4)

1The analysis can be easily extended to m-dimensional states, for details,
see [4].
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where Υ = {υlj} is the N × N iteration matrix that collects

the coefficients, υlj . The iteration matrix, Υ, is sparse and its

sparsity (non-zero) pattern reflects the underlying communi-

cation graph. The iteration matrix, Υ = {υlj}, can be tuned

to the particular application of interest under the constraints

that (i) the sparsity pattern of the iteration matrix, Υ, does

not violate the underlying communication graph; and (ii) the

limit,

lim
t→∞Υt+1, (5)

exists. We will see that under these conditions, we can choose

the elements, υlj , of the iteration matrix, Υ, to achieve, in a

distributed fashion, a desired task.

III. PROBLEM FORMULATION

We partition the N nodes in the network into M sensors

and n anchors, i.e., N = M + n. The set of anchors, κ,

contains the nodes that do not change their states. The anchors

are the drivers or leaders of the system that take the algorithm

in the direction of accomplishing a particular task. The set

of sensors, Ω, contains the sensors whose states change after

each iteration2. We index the set of anchors, κ, by 1, . . . , n
and the set of sensors, Ω, by n + 1, . . . , N . Let uk(t) denote

the state of the kth anchor at time t. Since anchors do not

update their state, we have

uk(t + 1) = uk(t) = uk(0), t ≥ 0, k ∈ κ. (6)

Similarly, let xl(t) denote the state of the lth sensor at time t.
Define

u(0) = [u1(0), . . . , un(0)]T , (7)

x(t) = [xn+1(t), . . . , xN (t)]T . (8)

We partition the state of the entire sensor network, c(t), as

c(t) =
[

u(0)
x(t)

]
. (9)

Similarly, we partition the N × N iteration matrix, Υ, as

Υ =
[

In 0
B P

]
. (10)

The general form of the higher dimension consensus (HDC)

algorithm, thus, becomes

x(t + 1) = Px(t) + Bu(0), (11)

where: In is the n× n identity matrix; the M × n matrix, B,

collects the updating coefficients for the sensors in terms of

the anchors; and the M ×M matrix, P, collects the updating

coefficients for the sensors in terms of the sensors themselves.

We write (4) in terms of the network initial conditions,

x(t + 1) = Pt+1x(0) +
t∑

k=0

PkBu(0). (12)

Given this setup, we now analyze the convergence conditions

of (11) and discuss relevant practical applications where the

algorithm (11) is useful.

2In the sequel, a sensor implies a non-anchor node.

IV. CONSENSUS IN HIGHER DIMENSIONS

Before introducing consensus in higher dimensions, we

briefly sketch the traditional average-consensus problem. To

proceed with the discussion, let ρ(P) be the spectral radius of

P, defined as

ρ(P) = max
i

|λi(P)|, (13)

where λi(P) is the ith eigenvalue of P.

Average-consensus: In average-consensus, B = 0 in (11)

and the algorithm reduces to

x(t + 1) = Px(t),
= Pt+1x(0). (14)

Consensus converges to the average of sensors’ initial condi-

tions if

ρ(P) = 1, (15)

and, we get

lim
t→∞Pt+1 =

11T

M
, (16)

under some additional conditions on P. In the above equa-

tion, 1 is the M×1 column vector of 1’s and M is the number

of sensors. These and other conditions under which (16) holds

are very well-studied, see, for instance, [2].

Higher dimensional consensus (n ≥ 1): Now, we extend

the average-consensus problem to consensus in higher dimen-

sions. We consider B �= 0 that also implies at least one anchor.

We establish the convergence of the HDC algorithm (11) in

the following lemma.

Lemma 1: Let x∞ denote the limit state of the sensors, i.e.,

x∞ = lim
t→∞x(t + 1). (17)

If

ρ(P) < 1, (18)

then

x∞ = (I − P)−1 BU(0). (19)

Proof: The proof is a consequence of (12) and Lemma 3

in Appendix I.

The limit state of the sensors, x∞, is independent of the sen-

sors’ initial conditions, i.e., the algorithm forgets the sensors’

initial conditions. In other words, it converges to (19) for

arbitrary sensors’ initial conditions. Let

W = (I − P)−1 B. (20)

The following lemma establishes rank conditions on (20).

Lemma 2: Let n < M and rW denote the rank of W. A

necessary condition for (20) to hold is

rB = rW. (21)

Proof: Let Q = (I − P)−1
, then rQ = M . By hypoth-

esis n < M , and from Lemma 4 in Appendix I, we have

rank(QB) ≤ rB, (22)

rank(QB) ≥ M + rB − M = rB. (23)
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The condition (21) now follows, since from (20), we also have

rank(QB) = rW. (24)

A. Consensus subspace

We define the consensus subspace as follows.

Definition 1 (Consensus subspace): Given the matrices,

B ∈ R
M×n and P ∈ R

M×M , such that ρ(P) < 1, the

consensus subspace, Ξ, is defined as

Ξ = {x∞ | x∞ = (I − P)−1 Bu(0), u(0) ∈ R
n}. (25)

The dimension of Ξ is established in the following theorem.

Theorem 1: If 1 ≤ n < M and ρ(P) < 1, then the

dimension of the consensus subspace, Ξ, is

dim(Ξ) = rank(B) ≤ n. (26)

Proof: The proof follows From Lemma 1 and Lemma 2.

Now, we formally define the dimension of the higher dimen-

sion consensus (HDC) algorithm (11).

Definition 2 (Dimension): The dimension of the HDC algo-

rithm is the dimensions of the consensus subspace, Ξ, given

by

dim(Ξ) = rank(B). (27)

Remarks: Here, we make some additional comments. The

sensor localization problem in m-dimensional Euclidean space

can be cast as HDC algorithm. In this setting, the state of each

sensor is its m-dimensional position estimate that is an m× 1
row vector. The entire exposition in this paper follows for the

case of row-vector states. The HDC algorithm with appropriate

choices of B and P can be formulated such that the limit state

is the exact sensor positions [4].

In the next section, we illustrate how to design the matrices

B and P to fit the leader-follower application. Other designs

lead to significant practical applications, for instance, dis-

tributed sensor localization [4], Jacobi algorithm [10], among

others.

V. LEADER-FOLLOWER ALGORITHM

To capture the leader-follower algorithm, we assume that the

network has n ≥ 1 anchors. The goal is that the sensor states

converge to the state of the anchor (if n = 1) or converge to a

linear combination of the states of the anchors (when n > 1).

We characterize leader-follower algorithms into the following

two categories.

A. One anchor, n = 1

In this case, we have only one anchor, n = 1, whose fixed

state is denoted by u1. The goal is for the entire sensor network

to converge to the state, u1, of the anchor. Let 1M be the M×1
column vector of 1’s; then we would like the state of the entire

sensor network, asymptotically, to be

lim
t→∞x(t + 1) = 1Mu1. (28)

Since n = 1, the iteration matrix, Υ, can be partitioned as

Υ =
[

1 0
b P

]
, (29)

where b is an M × 1 column vector.

1) Design of the iteration matrix, Υ: Relating (28) to (19),

we require

(I − P)−1b = 1M . (30)

We can write (30) as

b = (I − P)1M ,

= 1M − P1M . (31)

Note that, due to (18), the matrix I − P is invertible,

i.e., its eigenvalues, 1 − λi(P), can not be 0. Let b =
[b11, . . . , bM1]T . Element-wise, we have the following con-

dition on b and P,

bl1 +
M∑

j=1

plj = 1, l = 1, · · · , M, (32)

in addition to (18). Note that the above equation simply states

that each row of the iteration matrix, Υ, sums to 1.

2) Example: We may choose the following design strategy.

If sensor l is connected to anchor 1, we choose

plj = bl1 =
1

|K(l)| , j ∈ K(l),

where K(l) is the set of neighbors of sensor l and | · | denotes

the cardinality of a set. If sensor l is not connected to anchor 1,

we choose

plj =
1

|K(l)| , j ∈ K(l), (33)

bl1 = 0. (34)

It can be noted that, under the assumption of strong connec-

tivity of the sensor communication graph and with the above

choice, the matrix, P, is irreducible and further strictly sub-

stochastic guaranteeing (18), for details, see [10].

B. Multiple anchors, n > 1

When we have multiple anchors (n > 1), convergence to an

arbitrary linear combination of the anchors’ initial condition

may not be possible since the matrices, B and P, have sparsity

constraints, i.e., they have to follow the adjacency matrix of the

underlying sensor communication graph. From (20), it follows

that

B = W − PW, (35)

which along with (18) and (21) becomes the design criteria.

Example: Let

wi ∈ [0, 1] ,
∑

i

wi = 1, i = 1, . . . , n. (36)
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For all of the sensors to converge to the same convex combi-

nation of the anchors, we take the weight matrix, W, to be of

the form

W =

⎡
⎢⎣

w1 w2 . . . wn

...

w1 w2 . . . wn

⎤
⎥⎦ . (37)

It follows that rank (B) = 1, since rank (W) = 1, i.e., all

columns of B should be linearly dependent. Mathematically3,

blk �= 0, for any k ∈ κ ⇒ blk �= 0,∀ k ∈ κ, (38)

blk = 0, for any k ∈ κ ⇒ blk = 0,∀ k ∈ κ. (39)

Equation (38) clearly says that, if any sensor, l, communicates

to an anchor, k, then it has to communicate to all the anchors,

which may not be possible for a given sensor communication

topology. Furthermore, let bk denote the kth column of the

matrix B; then for every k, j ∈ κ there exists some βkj ∈ R,

such that

bk = βkjbj . (40)

More interesting cases arise when rank(W) is full, for

example, in sensor localization and solving linear systems of

equations in sensor networks, see [4],[10].

VI. ROBUSTNESS

Robustness is key in the context of these algorithms when

the information exchange is subject to communication noise,

packet drops, and imprecise knowledge of system parameters.

We propose a modification to the HDC algorithms along the

lines of the Robbins-Monro algorithm where the iterations are

performed with a decreasing step-size sequence that satisfies

some persistence conditions. With such step-sizes, we have

shown almost sure convergence of the sensor localization

algorithm to their exact locations under broad random phe-

nomenon [4]. This modification is easily extended to the

general class of HDC algorithms.

VII. CONCLUSIONS

In this paper, we presented a unifying view of commonly

used linear distributed iterative algorithms in sensor networks.

The notion of “consensus” has been described in a broader

framework in higher dimensions that allows us to use the same

set of tools for a broad variety of problems: average-consensus,

multi-agent coordination, sensor localization, and distributed

algorithms to solve linear systems of algebraic equations. Our

generalized framework also provides a basis to analyze such

algorithms for convergence and robustness. We illustrated our

approach with the leader-follower application.

3We assume that bk �= 0, ∀ k. If this is not true, then the kth anchor
does not send information to any sensor and, hence, does not take part in the
algorithm. So it can be removed from the analysis.

APPENDIX I

IMPORTANT RESULTS

Lemma 3: If a matrix P is such that

ρ(P) < 1,

where ρ(·) denotes the spectral norm of a matrix, then

lim
t→∞Pt+1 = 0, (41)

lim
t→∞

t∑
k=0

Pk = (I − P)−1
. (42)

Proof: The proof is straightforward.

Lemma 4: Let rA be the rank of the M × M ma-

trix (I − P)−1, and rB the rank of the M × n matrix B,

then

rank(I − P)−1B ≤ min(rA, rB), (43)

rank(I − P)−1B ≥ rA + rB − M. (44)

Proof: The proof is available on pages 95−96 in [13].
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