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Abstract — In this paper, we study the achievable throughput for
regularized block diagonalization (RBD) precoding in multi-user
MIMO broadcast channels at high SNRs. By applying an analytical
framework for a high SNR affine approximation to capacity, we
derive the multiplexing gains and the power offsets for RBD in two
cases separately. In the first case, we assume that the aggregate
number of receive antennas is less than or equal to the number of
transmit antennas. It is found that RBD can maintain the same multi-
plexing gain as dirty paper coding (DPC) and block diagonalization
(BD) precoding at high SNRs and has a smaller power offset than
BD. The sum rate differences relative to DPC and BD are analyzed
and bounded as simple functions of the system parameters. In the
second case, we assume that the aggregate number of receive anten-
nas is larger than the number of transmit antennas. Although RBD
can still be performed, the achievable throughput is degraded with
an increasing number of receive antennas. The benefit of spatial
multiplexing is completely lost due to a unit spatial multiplexing
gain at high SNRs.

Index Terms— Muli-user MIMO, dirty paper coding, linear
precoding, capacity approximation

1. INTRODUCTION

Compared to point-to-point MIMO channels, multi-user MIMO
broadcast channels can significantly increase the capacity and spec-
tral efficiency by using space division multiple access (SDMA) to
simultaneously transmit multiple data streams to a group of users.
As an optimal SDMA strategy, dirty paper coding (DPC) has been
shown to achieve the capacity region of the Gaussian MIMO broad-
cast channels in [1]. However, deploying DPC in real systems is
very impractical due to the significant additional complexity at both
transmitter and receiver.

An alternative sub-optimal SDMA strategy is linear precoding,
which has a lower complexity and is able to transmit the same num-
ber of data streams as a DPC based system. Therefore linear pre-
coding can achieve the same multiplexing gain as DPC, but does
incur a sum rate loss compared to DPC. The authors of reference [2]
have analyzed the ratio between the achievable sum rates of DPC
and block diagonalization (BD) precoding [3]. In [4] the absolute
rate and power offsets between these algorithms have been studied
at high SNRs .

In this work we further consider a recently proposed linear
precoding technique, regularized block diagonalization (RBD) [5],
which has an improved sum rate and diversity order relative to BD.
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Furthermore, RBD has the advantage that it is not constrained by
the dimensionality condition that the aggregate number of receive
antennas is not larger than the number of transmit antennas.

The key analytical framework used in this paper is an affine
approximation for the system capacity at high SNRs proposed in
[6]. Thereby, we approximate the achievable throughput of an RBD
based system and consider two cases separately. In the first case we
assume that the aggregate number of receive antennas is less than or
equal to the number of transmit antennas. Compared to DPC and
BD based systems, the bounds of the average rate and power offsets
among these strategies are derived as a function of the system pa-
rameters (e.g., the number of users and receive antennas). In the sec-
ond case we assume that the aggregate number of receive antennas
is larger than the number of transmit antennas. It is shown that the
same multiplexing gain as for DPC cannot be maintained anymore.
With an increase of the number of receive antennas, the achievable
throughput is gradually degraded.

2. SYSTEMMODEL

We consider a multi-user MIMO system with a single base station
(BS) and K users, where the BS is equipped withMT transmit an-
tennas and each user has Mr receive antennas. The aggregate num-
ber of receive antennas, denoted by MR, is equal to K · Mr. The
propagation channel between the BS and each user is assumed to
have a spatially uncorrelated Gaussian distribution. The received
signal of the ith user is expressed as

yi = Hix + ni (1)

where x ∈ C
MT×1 is the transmit signal vector. Under an

average total power limitation PT at the BS, we require that
tr(E

�
xxH

�
) ≤ PT. The matrix Hi ∈ C

Mr×MT is the chan-
nel gain matrix for user i and the vector ni ∈ C

Mr×1 represents
Additive White Gaussian Noise (AWGN) with unit variance. In this
paper we assume that each user has perfect knowledge of its own
channel and the BS has perfect knowledge of all users’ channels.
The signal-to-noise ratio (SNR) is defined as the ratio between PT

and the noise variance, i.e., SNR=̂PT.

2.1. Capacity Approximation Framework

The capacity approximation framework used in this paper has been
developed in [6], where the channel capacity C(PT) is well approx-
imated at high SNRs as

C(PT) = S∞ · (log2 PT − L∞) + o(1) , (2)

where S∞ = lim
PT→∞

log2 e · PTĊ(PT) (3)

and L∞ = lim
PT→∞

(log2 PT −
C(PT)

S∞
) . (4)
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Here S∞ represents the multiplexing gain (i.e., the asymptotic slope
of the spectral efficiency in bps/Hz per 3 dB) and L∞ refers to the
power offset in 3 dB units. Ċ(PT) denotes the first derivative of the
capacity with respect to PT. For either multi-user MIMO broadcast
channels or point-to-point MIMO channels, the multiplexing gain
S∞ is found to be the minimum of the aggregate number of receive
antennas and the number of transmit antennas under the assumption
of uncorrelated Rayleigh fading. The rate offset L∞ depends on the
fading statistics and the signaling strategy.

3. SUM RATE APPROXIMATION (MT ≥ MR)

In this section we compute the high SNR affine approximation to the
RBD based sum rate under the condition that the aggregate number
of receive antennas is less than or equal to the number of transmit
antennas. Furthermore, compared to DPC and BD based sum rates,
we derive the bounds for the average rate and power offsets among
them.

3.1. Dirty Paper Coding

In [7] the DPC sum rate is shown to converge to the capacity of
a point-to-point MIMO channel with the matrix H ∈ C

MT×MR

under the conditionMT ≥ MR, thus

lim
PT→∞

�
CDPC(PT) − log2

���I +
PT

MR
HHH

���� = 0 . (5)

Using this result we write the DPC sum rate at high SNRs as

CDPC(PT) ∼= log2

���I +
PT

MR
HHH

��� , (6)

which corresponds to the fact that we choose the covariance matrix
Q = PT

MR
IMT as an asymptotically optimal solution at high SNRs

[4]. Then using the approximation framework of [6] we get

S∞ = MR , (7)

L∞ = log2 MR −
1

S∞
log2

��HHH
�� , (8)

and the approximation of the DPC sum rate at high SNRs can be
found as

CDPC(PT) ∼= MR log2 PT −MR log2 MR + log2

��HHH
�� . (9)

3.2. Regularized Block Diagonalization Precoding

In a multi-user MIMO system RBD is deployed to suppress multi-
user interference (MUI) while achieving a high sum rate. In this case
the transmit signal vector x in equation (1) can be rewritten as

x =
�K

i=1
Fisi (10)

where si ∈ C
ri×1 contains the data symbols for user i and ri rep-

resents the number of data streams intended for user i. The matrix
Fi ∈ C

MT×ri denotes the RBD precoding matrix for user i. Then
the received signal for user i is given by

yi = HiFisi +
�K

j=1,j �=i
HiFjsj + ni . (11)

With RBD the channel Hi is converted to an equivalent channel
H̄i = HiFi which has less overlap with the other users’ channels.
The achievable sum rate of RBD based system is expressed as

CRBD(PT) = max�
K

i
tr(Qi)≤PT

�K

i=1
log2

��I + H̄iQiH̄
H
i

�� , (12)

where we set the covariance matrix Qi = E
�
sis

H
i

�
to be PT

MR
Iri

for a fair comparison with DPC. Thus, S∞ and L∞ for RBD can be
calculated from equations (3) and (4), and we get

S∞ = MR , (13)

L∞ = log2 MR −
1

S∞
log2

�K

i=1

��H̄iH̄
H
i

�� . (14)

It is found that RBD can maintain the same multiplexing gain as
DPC, but has a different power offset.

Now let us further quantify the power offset for RBD. The RBD
precoding matrix of user i is described as [5]

Fi = γFai
Fbi

, where Fai
= �Vi(	ΣT

i
	Σi + αIMT

)−1/2 . (15)

The matrix Fai
is used to suppress MUI while balancing it with

noise enhancement. The matrix Fbi
can further optimize the system

performance by optimal power loading. In this work we assume that
Fbi

is unitary. The parameter γ is chosen to set the total transmit
power to PT, and α =



PT

MRσ2
n

�−1
. The matrices �Vi ∈ C

MT×MT

and 	Σi ∈ C
(MR−Mr)×MT are the right singular vectors and the di-

agonal matrix of the singular values of the combined channel matrix
of all other users, respectively.

Note that in [5] equation (15) is derived under the condition
E
�
sis

H
i

�
= Iri

. Taking into account E
�
sis

H
i

�
= PT

MR
Iri

in
our system model, we rewrite the expressions (22) and (26) in [5] as

Fa = min
Fa

E
��K

i=1

�HiFai
si

2

F
+

‖ni‖
2
F

β2

�
and (16)

β2 =
PT�K

i=1
tr(Fai

sis
H
i FH

ai
)

=
MR�K

i=1
tr(Fai

FH
ai

)
. (17)

Then using a similar derivation as in [5] we get a new expression for
Fai

as

Fai
= �Vi


 PT

MR

	ΣT
i
	Σi + σ2

nIMT

�−1/2
. (18)

Considering σ2
n = 1 in this work, we approximate

��H̄iH̄
H
i

�� with
the above expression as follows��H̄iH̄

H
i

��
=

���Hi�Vi


 PT

MR

	ΣT
i
	Σi + IMT

�−1�V H
i HH

i

���
(1)
=

���Hi

��V (1)
i

�V (0)
i

�
 PT

MR

	ΣT
i
	Σi + IMT

�−1��V (1)
i

�V (0)
i

�H
HH

i

���
(2)
=

���Hi�V (1)
i


 PT

MR

	Λ2
i + I(MR−Mr)

�−1�V (1)H
i HH

i

+ Hi�V (0)
i

�V (0)H
i HH

i

���
(3)
≈

���Hi�V (1)
i


 PT

MR

	Λ2
i

�−1�V (1)H
i HH

i + Hi�V (0)
i

�V (0)H
i HH

i

���
(4)
=

���MR

PT
G

(1)
i G

(1)H
i + G

(0)
i G

(0)H
i

���
(5)
≈

���G(0)
i G

(0)H
i

���
1 +
MR

PT
tr
�
(G

(0)
i G

(0)H
i )−1G

(1)
i G

(1)H
i

�
� �� �

μi

�

=

���G(0)
i G

(0)H
i

���
1 +
μiMR

PT

�
. (19)

At step (1) we separate �Vi into �V (1)
i ∈ C

MT×(MR−Mr) and �V (0)
i ∈

C
MT×(MT−MR+Mr), which refer to the right singular vectors cor-
responding to non-zero singular values and the right singular vectors
corresponding to zero singular values, respectively. At step (2) we
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use �Λi ∈ C
(MR−Mr)×(MR−Mr) to represent the economy-size ver-

sion of �Σi. For large PT, we neglect I(MR−Mr) and reach step
(3). Then we replaceHi�V (1)

i
�Λ−1

i andHi�V (0)
i byG

(1)
i and G

(0)
i ,

respectively. At step (4) we use the following property of matrix
determinants

det(A + εX) = det(A)(1 + tr(A−1X)ε) + o(ε2), (20)

where A and X are square matrices and ε is very small number,
which leads to step (5).

Due to the fact that
0 ≤ tr(AB)n ≤ tr(A)ntr(B)n (21)

ifA andB are positive semi-definite matrices of the same order, we
can bound μi defined in equation (19) as

0 ≤ μi ≤ tr
�
(G

(0)
i G

(0)H
i )−1

�
tr
�
G

(1)
i G

(1)H
i

�
. (22)

Substituting equation (19) into equation (14), L∞ can be rewrit-
ten as
L∞ = log2 MR −

1

MR
log2

�K

i=1

���G(0)
i G

(0)H
i

���
−

1

MR
log2

�K

i=1

�
1 + μiMR

PT

�
. (23)

As a result, we approximate the RBD sum rate at high SNR as
CRBD(PT) ∼= MR log2 PT −MR log2 MR

+ log2

�K

i=1

���G(0)
i G

(0)H
i

���+ log2

�K

i=1

�
1 + μiMR

PT

�
.

(24)
3.3. Block Diagonalization Precoding

BD is an extension of zero-forcing precoding for the case that the
users have multiple receive antennas [3]. With BD, the ith user’s
precoding matrix Fi lies in the null space of all other users’ chan-
nels, i.e., �V (0)

i ∈ C
MT×(MT−MR+Mr). Thus the system is con-

verted intoK parallel MIMO channels with effective channel matri-
ces G

(0)
i = Hi�V (0)

i , i = 1, · · · , K. There is no MUI at each user.
The sum rate approximation for BD at high SNRs is given by [4]

CBD(PT) ∼= MR log2 PT−MR log2 MR+log2

�K

i=1

���G(0)
i G

(0)H
i

��� ,

(25)
which has the same multiplexing gain as DPC and RBD whenever
MT ≥ MR, but a different power offset.

3.4. Average Rate and Power Offset

In this subsection we derive bounds of the average rate and power
offsets among the sum rates of DPC, RBD, and BD at high SNRs.

3.4.1. RDB vs. BD

We define the rate offset between the sum rates of RBD and BD at
high SNRs as

ΔRBD−BD = lim
PT→∞

[CRBD(PT)− CBD(PT)] , (26)

which is for one channel realization. By averaging over the fading
distribution, we can get the average rate offset as

Δ̄RBD−BD = E {ΔRBD−BD} . (27)
Theorem 1. The average rate offset between RBD and BD at high
SNRs is upper bounded by

Δ̄RBD−BD ≤ K log2

�
1 +

μMR

PT

�
,

where

�
0 ≤ μ ≤

M2
r
(MR−Mr)

MT−MR
, for MT > MR

0 ≤ μ ≤
(M2

r
/ξ+Mr−ξ)(MR−Mr)

2−ξ/Mr
, for MT = MR

and ξ is a small positive number which should be less than or equal

to the smallest eigenvalue of G
(0)
i G

(0)H
i . (28)

This expression can be proved by substituting equations (24) and
(25) into equation (27), and we get

Δ̄RBD−BD = KE

�
log2

�
1 +

μiMR

PT

�	
≤ K log2

�
1 +

MR

PT
E {μi}

�
, (29)

where
0 ≤ E {μi} ≤

(a)
 �� 
E

�
tr

�
(G

(0)
i

G
(0)H
i

)
−1
�� (b)
 �� 

E

�
tr

�
G

(1)
i

G
(1)H
i

��
=

M2
r
(MR − Mr)

MT − MR

. (30)

According to the properties of Wishart matrices in [8], we calcul-
cate the term (b) and the term (a) asMr(MR − Mr) and Mr

MT−MR
,

respectively. For the case thatMT = MR, the term (a) can be eval-
uated by equation (9) in [9].

It can been seen that with increasing SNR the average rate off-
set between RBD and BD converges to zero. In other words, using
RBD, at very high SNR each user transmits only in the null space of
all other users as in BD precoding.

The average rate offset can easily be translated into an average
power offset. We represent the average power offset byΔP̄RBD−BD

and get
ΔP̄RBD−BD =

3Δ̄RBD−BD

S∞
=

3Δ̄RBD−BD

MR
. (31)

3.4.2. DPC vs. RBD

The rate offset between the sum rates of DPC and RBD at high SNRs
is also defined as

ΔDPC−RBD = lim
PT→∞

[CDPC(PT)− CRBD(PT)] . (32)

Averaging over the fading distribution, we calculate the average rate
offset by

Δ̄DPC−RBD = E {ΔDPC−RBD} . (33)
Theorem 2. The average rate offset between DPC and RBD at high
SNRs is low bounded by

Δ̄DPC−RBD ≥ log2 e
�MR−1

m=0
ϕ(MT −m)−K log2(1 + μMR

PT

)

−K · log2 e
�Mr−1

n=0
ϕ(MT −MR + Mr − n) , (34)

where ϕ(·) denotes the digamma function.
This expression can be proved by substituting equations (9) and

(24) into equation (33), and we get
Δ̄DPC−RBD ≥E

�
log2

��HHH
���−K log2

�
1 +

MR

PT
E {μi}

�
−KE

�
log2

���G(0)
i G

(0)H
i

���	 . (35)

Note thatHHH is Wishart distributed withMT degrees of freedom
andG

(0)
i G

(0)H
i is Wishart distributed withMT−MR+Mr degrees

of freedom. According to the property of Wishart matrices in equa-
tion (2.12) of [8], we can reach to Theorem 2. The upper bound of
Δ̄DPC−RBD is the average rate offset between DPC and BD, i.e.,
Δ̄DPC−BD which has been calculated in [4].

Using a similar expression as in equation (31), we calculate the
average power offset between DPC and RBD by

ΔP̄DPC−RBD =
3Δ̄DPC−RBD

S∞
=

3Δ̄DPC−RBD

MR
. (36)

In Figure 1(a) and 1(b) we compare the approximation results with
simulation results, which correspond to dashed lines and solid lines,
respectively. The sum rate of DPC is simulated by applying an algo-
rithm proposed in [10], and the sum rates of RBD and BD precoding
are simulated by using Ci = E {log2(1 + SINRi)} for each user
with Gaussian inputs. From the figures we can see that even at mod-
erate SNRs the approximation results still can provide an accurate
characterization.
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Fig. 1. Performance comparisons for simulation results and approximation results

4. SUM RATE APPROXIMATION (MT < MR)

Under the conditionMT < MR each user’s precoding matrix cannot
lie in the null space of all other users’ channels anymore, since there
is no null space left. As a result, zero-forcing precoding techniques
(e.g., BD) cannot be performed in this case. However, the RBD
precoding matrix Fi (i = 1, . . . , K) does not only lie in the null
space of all other users’ channels (i.e.,�V (0)

i ), but also the space�V (1)
i

with a power that is inversely proportional to the singular values of
the all other users’ channel. In this section we study the sum rate of
RBD precoding for this case and approximate this sum rate at high
SNRs.

First let us use some results we have derived in Section 3.2, but
rewrite the expression for

��H̄iH̄
H
i

�� as���H̄iH̄
H
i

��� =

���Hi�Vi

� PT

MR

�ΣT
i
�Σi + IMT

�−1�V H
i HH

i

���
(1)
≈

���MR

PT
Hi�Vi

��ΣT
i
�Σi

�−1�V H
i HH

i

���
(2)
=

���MR

PT
Hi

��HH
i
�Hi

�−1
HH

i

���. (37)

In step (1) we neglect IMT by considering the high SNR regime.
We represent the all users’ channels except for user i by �Hi ∈

C
(K−1)Mr×MT . Using its SVD �Hi = �Ui�Σi�V H

i , leads to step
(2).

Substituting equation (37) into equation (14) we get
L∞ = log2 MR −

1

S∞
log2

�K

i=1

���MR
PT

Hi(�HH
i
�Hi)−1HH

i

��� . (38)

Since the average power offset is more interesting than a power offset
per realization, we average the above power offset over the fading
distribution and get
L̄∞ = E {L∞}

= log2 MR −
K

S∞
E

�
log2

���MR

PT
Hi(�HH

i
�Hi)

−1HH
i

����

= log2 PT −
K

S∞
E

�
log2

���Hi(�HH
i
�Hi)

−1HH
i

����

(1)
= log2 PT −

K log2 e

S∞

Mr−1	
n=0

�
ϕ(MT − n)− ϕ(MR −MT − n)

�
.

At step (1) we rewrite E



log2 |Hi(�HH
i
�Hi)

−1HH
i |
�
by applying

Theorem 2.12 in [8].
Then we can approximate the RBD sum rate at high SNRs as

CRBD(PT) ∼= K log2 e

Mr−1	
n=0

�
ϕ(MT − n)− ϕ(MR −MT − n)

�
.

From this equation and Figure 1(c) we can see that under the condi-
tion MT < MR, the RBD sum rate stays constant for high SNRs,
which show that the benefit of spatial multiplexing is completely lost
and S∞ = 1. In this case (MT < MR), RBD should be performed
only for low SNRs.

5. CONCLUSION

In this paper we have studied the sum rates approximations for DPC,
RBD, and BD based multi-user MIMO systems at high SNRs. First,
under the condition that the aggregate number of receive antennas
is not larger than the number of transmit antennas, it is found that
DPC, RBD, and BD can maintain the same spatial multiplexing gain,
but have different power offsets. We quantify the average rate and
power offsets bounds among them as simple functions of the system
parameters. Then under the condition that the aggregate number of
receive antennas is larger than the number of transmit antennas, the
approximated sum rate of RBD is calculated. Although RBD still
can be performed in this case, the benefit of spatial multiplexing is
completely lost due to a unit spatial multiplexing gain at high SNRs.
In this case, we suggest to use RBD only for low to medium SNRs.
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