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Abstract—Multi-input multi-output (MIMO) receivers have
generally been designed and their communication performance
analyzed under the assumption of additive Gaussian noise.
Wireless transceivers, however, may also be affected by radio
frequency interference (RFI) that is well modeled using non-
Gaussian impulsive statistics. In this paper, we derive bounds on
the communication performance for a two transmit, two receive
antenna MIMO system in the presence of RFI. Our contributions
include derivation of (1) channel capacity in the presence of
RFI, (2) probability of symbol error for uncoded transmissions,
and (3) Chernoff bound on the pairwise error probability and
cutoff rate as a measure of the throughput performance for coded
transmissions. Comparison with the communication performance
bounds for receivers designed assuming additive Gaussian noise
demonstrates degradation in communication performance in the
presence of RFI.

Index Terms: Electromagnetic radiative interference, MIMO
systems, Communication system performance, Information rates,
Error analysis, MAP estimation

I. INTRODUCTION

Wireless transceivers deployed on a computation platform

(e.g. laptop computer) are greatly affected by the RFI gen-

erated by the clocks and buses on the platform itself [1].

RFI is a combination of independent radiation events and

is well modeled using non-Gaussian impulsive statistics. In

[2], it was demonstrated that conventional MIMO receivers

designed assuming additive Gaussian noise, such as zero-

forcing, maximum likelihood and space-time block coded

systems, show degradation in communication performance in

the presence of a mixture of Gaussian and impulsive noise.

Middleton Class A, B and C noise models [3] are per-

haps the most common statistical-physical model for RFI.

They have been shown to accurately model the non-linear

phenomenon governing electromagnetic interference (EMI),

and explicitly include a Gaussian component to account for

receiver thermal noise [3]. In [4], performance bounds for sym-

bol error rate optimal reception in the presence of Middleton

Class A noise was studied for single antenna systems. In this

paper, we extend this analysis to MIMO systems and derive

the capacity and performance bounds in the presence of RFI.

Extending the Middleton models to multi-antenna systems

is not straightforward. Many authors (e.g. [5], [6]) used a

weighted sum of multivariate Gaussian densities to approx-

imate the distribution of a Middleton Class A model. These
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models are not derived based on physical principles governing

EMI. In [7], an extension to the Middleton Class A model

was proposed for two antenna systems based on statistical

physical principles. Hence, we restrict our attention to 2 × 2
MIMO systems using this bivariate Middleton Class A noise

model which was demonstrated to accurately model RFI using

measured RFI data acquired from a laptop embedded wireless

transceiver in [8].

In this paper, we derive communication performance bounds

for symbol error rate optimal reception are derived for a 2×2
MIMO system in the presence of bivariate Middleton Class A

noise. The capacity of a memoryless channel in the presence

of RFI is derived and compared to an additive Gaussian noise

channel. The probability of error for uncoded transmission is

derived using the symbol error rate optimal decision rule. For

coded transmission, the Chernoff bound on the pairwise error

probability and the corresponding cutoff rate analyzed under

a random coding argument.

II. SYSTEM MODEL

Consider a transmission system where both the transmitter

and receiver are equipped with two antennas. The discrete-time

baseband MIMO channel model can be expressed as

Y =

√
Es

2
S + N (1)

where Y is the 2×T matrix of received signals with T being

the length of the transmitted data block, Es is the total transmit

energy, S is the 2 × T transmitted data block and N is the

2×T matrix representing additive noise. The transmitted data

block S = (s1, s2, · · · , sT ) is chosen from a codebook S with

cardinality |S|. The 2 × 1 code symbols st ∈ X , for t ∈
[1, T ], are derived from an arbitrary set of real or complex

constellation points and chosen from a set of input alphabets

X with cardinality |X |.
Our additive noise model is the bivariate Middleton Class

A model from [7]. The model represents narrowband RFI (i.e.

noise spectrum bandwidth is less than the receiver bandwidth)

and explicitly includes a Gaussian component. Since we

assume that RFI is a sum of independent transmission events

[3], the noise observations will be temporally independent

and identically distributed (i.i.d.). Further, the in-phase and

quadrature phase components of the noise (N = nI +jnQ) are
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assumed to be i.i.d. such that the probability density function

fN(nI ,nQ) = fnI
(nI,1, nI,2) × fnQ

(nQ,1, nQ,2) (2)

where nI,k and nQ,k denote the in-phase and quadrature phase

noise signals at receiver antenna k, respectively, for k = 0, 1.

The in-phase (nI) and quadrature phase (nQ) baseband noise

components each have the joint spatial distribution [7]

fn(n1, n2) =
e−A

2π|K0| 12
e
−nT K

−1
0

n

2 +

(
1 − e−A

)
2π|K1| 12

e
−nT K

−1
1

n

2

(3)

where | · | denotes the determinant function and for m = 0, 1,

Km =

[
(cm)2 κcmĉm

κcmĉm (ĉm)2

]
(4)

(cm)2 =
m
A + Γ1

1 + Γ1
, (ĉm)2 =

m
A + Γ2

1 + Γ2
. (5)

This model is uniquely determined by the following four

parameters:

• A is the overlap index. It is the product of the average

number of emission events impinging on the receiver per

second and mean duration of a typical interfering source

emission, A ∈ [10−2, 1] in general [9].

• Γ1, Γ2 are the ratios of the Gaussian to the non-Gaussian

component intensity at each antenna, Γ1, Γ2 ∈ [10−6, 1]
in general [9].

• κ is the correlation coefficient between the observations

at the two antennas.

III. CAPACITY

Channel capacity is an upper bound on the rate at which

information can be reliably transmitted over a channel, where

reliable transmission means that the probability of error can be

driven to zero by increasing the block length. Using Shannon’s

channel coding theorem,

C = sup
fS(S), Tr{E(SSH)}≤Es

I(Y;S) (6)

= sup
fS(S), Tr{E(SSH)}≤Es

h(Y) − h(N) (7)

where Tr{X} is the trace of matrix X, fS(S) is the proba-

bility distribution of the transmitted signal and the differential

entropy

h(X) =
∫
X

fX(x) log2 (fX(x))dx. (8)

The mutual information, I(Y;S), between the received and

transmitted signal on an additive bivariate Middleton Class A

noise channel was analyzed under the following conditions.

1) Received signal has Gaussian distribution: An upper

bound on mutual information for additive bivariate Middleton

Class A noise channel can be evaluated by assuming that the

received signal Y is Gaussian distributed with variance equal

to the sum of noise variance and transmitted power. Achieving

this upper bound implies that there exists a transmit codebook

for every signal-to-noise ratio (SNR), such that the received

signal has a Gaussian distribution. This codebook may not
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Fig. 1. Mutual information in the presence of Gaussian and bivariate
Middleton Class A noise with parameters A = 0.1, Γ1 = 0.01, Γ2 = 0.1
and κ = 0.4 for a 2× 2 MIMO system.

exist for all possible SNRs, in which case the channel capacity

will be lower than this upper bound.

2) Transmitted signal codebook has Gaussian distribution:
Mutual information with a Gaussian distributed transmission

codebook provides a practical measure of information rate

since the transmitted signal are typically Gaussian distributed

in communication systems [10]. While this codebook achieves

the channel capacity for additive Gaussian noise channels, it

is not the optimal codebook to maximize mutual information

in the presence of additive bivariate Middleton Class A noise.

The bounds on mutual information for additive bivariate

Middleton Class A noise are compared to the capacity of

a channel with additive Gaussian noise of equal variance in

Fig. 1. The constant gap between the channel capacity in the

presence of Middleton Class A noise and the capacity in the

presence of Gaussian noise represents the difference between

the entropy of Middleton Class A and Gaussian distributions

with equal variance. At high SNR, the mutual information

under the constraint of Gaussian distributed transmit codebook

converges to the upper bound. At low SNR, there may exist

a codebook which has higher mutual information than the

Gaussian distributed codebook. Deriving such a codebook,

however, lies beyond the scope of this paper.

IV. PERFORMANCE BOUNDS

A. MAP Decoding Rule

The maximum a posteriori (MAP) receiver chooses the

codeword which maximizes the a posteriori probability

P (S|Y) that codeword S was sent given that Y was received.

Assuming the channel is memoryless, noise is additive and

each codeword is transmitted with equal probability, we can

write the MAP decoding rule as

Ŝ = arg max
S∈S

P (S|Y) = arg max
S∈S

T∏
t=1

p(nt = yt − st) (9)
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where Ŝ is the decoded codeword. Since ln(·) is a concave

function

Ŝ = arg max
S∈S

ω(S,Y) = arg max
S∈S

T∑
t=1

ln p(nt = yt − st) (10)

where ω(S,Y) = ln(P (S|Y)). This shows that the MAP

detection rule is equivalent to choosing a codeword which

maximizes an additive decoding metric ω(S,Y). This decod-

ing metric assigns a decision region D(S) to each codeword

S ∈ S, where

D(S) = {X|∀S′ ∈ S,S′ �= S : ω(S,X) > ω(S′,X)}. (11)

Using the decision region, MAP decoding is equivalent

to finding the codeword S for a given received vector Y,

such that Y ∈ D(S). Thus, the probability of a correct

decoding decision given that S was transmitted is given as

P (Y ∈ D(S)|S). Correspondingly, the probability of error

PMAP
e can be expressed as

PMAP
e = 1 − 1

|S|
∑
S∈S

P (Y ∈ D(S)|S). (12)

B. Uncoded Transmission

For uncoded transmission, the MAP decoding metric can

be obtained simply by setting the codeword length in (10)

to 1. The receiver chooses the symbol S that minimizes the

probability p(N = Y − S). The corresponding probability of

error can now be calculated as

Pe = 1 − 1
|S|

∑
S∈S

∫
D(S)

fN(N = X − S)dX. (13)

For bivariate Class A noise, this error probability was com-

puted through numerically estimating the shape of the decision

regions and integrating the noise density function over its

corresponding decision region. Fig. 2 shows the probability of

error for different values of parameter A. The error probability

was also analyzed for uncoded transmission over an additive

bivariate Class A channel with a MAP receiver designed for

additive Gaussian noise channel. In this scenario, the decision

region D(s) is replaced by a new decision region Dg(s), that is

evaluated assuming that the noise has a Gaussian distribution.

The symbol error probability with a Gaussian MAP receiver

PG
e can be expressed as

PG
e = 1 − 1

|S|
∑
S∈S

∫
Dg(S)

fN(N = X − S)dX. (14)

The probability of error for uncoded transmission was eval-

uated for the additive Class A noise channel with MAP

decoding for Class A noise and Gaussian distributed noise.

Fig. 2 shows that the probability of error for both types of

decoders is very close for the chosen simulation parameters.

This is because the decision regions D(s) and Dg(s) are

similar in this case. The shape of the symbol error probability

curve is also typical for additive Class A noise systems. The

distribution function of Class A noise (3) is comprised of two

Gaussian components with low and high variance, which are
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Middleton Class A MAP Receiver (A = 0.01)
Gaussian MAP Receiver (A = 0.01)
Middleton Class A MAP Receiver (A = 0.1)
Gaussian MAP Receiver (A = 0.1)

Fig. 2. Symbol error probability with MAP decoding rule for Gaussian
and Middleton Class A noise under additive bivariate Middleton Class A
noise with parameters Γ1 = 0.01, Γ2 = 0.1 and κ = 0.4. The error
probability curves for Gaussian and Middleton Class A noise MAP receivers
are indistinguishably close in this figure.

loosely regarded as the thermal noise and impulsive compo-

nents, respectively. As low SNR, the error probability starts

falling since the Gaussian component with low variance is

suppressed by increasing SNR. The curve then flattens because

the SNR is not sufficiently high to suppress the impulsive

component of the Class A noise. The error probability is now

limited by the rate of arrival of impulses, which is a fixed

quantity and depends solely on parameter A. At high SNR, the

curve falls again since both components of Class A noise are

being suppressed. This particular nature of error probability

also occurs during analysis of receiver design in Middleton

noise in [2], [6] and [8].

C. Coded Transmission

In the case of coded transmission, the union bound on the

error probability can be used to obtain a asymptotically tight

upper bound given as

Pe ≤ 1
|S|

∑
S∈S

∑
S′∈S,S′ �=S

P (S → S′) (15)

where P (S → S′) is the pairwise error probability (PEP). The

PEP represents a decoding error in a binary decision between

the codewords S′ and S and can be expressed as

P (S → S′) = P (w(S′,Y) − w(S,Y) > 0 | S) . (16)

Using Chernoff bounding techniques [4], the PEP has an upper

bound as follows

P (S → S′) ≤ min
λ

T∏
t=1

C(st, s′t, λ) (17)

where the Chernoff factors

C(st, s′t, λ) =
∫ ∞

−∞
eλ(w(s′t,yt)−w(st,yt))f (nt = yt − st) dyt.

(18)
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Middleton noise (A = 0.5)
Middleton noise (A = 0.1)
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Gaussian noise

Fig. 3. Chernoff Factors with MAP decoding MIMO receiver in presence of
Gaussian and bivariate Middleton Class A noise with parameters Γ1 = 0.01,
Γ2 = 0.1 and κ = 0.4.

In (18), the integration is four-dimensional for a complex

channel with two receive antennas. If MAP decoding is used,

λ = 1/2 minimizes the Chernoff factors [4] and tightens the

bound in (17). Since a binary decision between the codewords

s and s′ is considered, the Chernoff factors are a function of

the distance, dt = st − s′t, between the codewords. For i.i.d.
in-phase and quadrature phase noise components, this yields

CMAP (dt) =
∫ ∞

−∞

√
fnI

(
n′t,I

)
fnI

(nt,I)dyt,I

×
∫ ∞

−∞

√
fnQ

(
n′t,Q

)
fnQ

(nt,Q)dyt,Q (19)

where nt = yt − st and n′t = yt − s′t and each integration is

two-dimensional for two a receive antenna system.

To quantify the throughput performance of coded transmis-

sion, we derive the cutoff rate R0 based on random coding

arguments. Cutoff rate provides a similar metric to the channel

capacity and relates the transmission rate R, expressed as the

average number of information bits per channel use, to the

decoding error probability for a length T code as

Pe < e−T (R0−R). (20)

Hence it shows that for any transmission rate R < R0,

an arbitrarily small error probability can be achieved by

increasing the code length T . Assuming every code symbol

in X is equally likely to be transmitted and MAP decoding

is performed at the receiver, the cutoff rate can be expressed

using the Chernoff factors as

R0 = − log2

1
|X |2

∑
s∈X

∑
s′∈X

CMAP (d = s − s′). (21)

Fig. 3 compares the Chernoff factors for MAP decoding in

the presence of additive bivariate Middleton Class A noise.

Chernoff factors in the presence of Gaussian noise is also

plotted.
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BPSK, Middleton noise
BPSK, Gaussian noise
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Fig. 4. Cutoff Rate with MAP decoding MIMO receiver in presence of
Gaussian and bivariate Middleton Class A noise with parameters A = 0.1,
Γ1 = 0.01, Γ2 = 0.1 and κ = 0.4.

Fig. 4 compares the cutoff rate in the presence of bivariate

Middleton Class A noise with the cutoff rate in the presence

of Gaussian noise for coded transmissions using BPSK, QPSK

and 16QAM modulation and spatial multiplexing mode of

transmission. The plateau in the curves at moderately high

SNR in the Chernoff bounds and cutoff rate is consistent

with the explanation provided in Sec. IV-B for probability of

symbol error in uncoded transmissions.
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