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ABSTRACT

This paper introduces new hybrid blind equalization algo-

rithms for QAM signals, the first term of which is the constant

modulus criterion (CMA) or its extended version (ECMA)

and the second are a penalty term that vanishes at constel-

lation points coordinates. Several penalties, based on cosine,

gaussian and polynomial �1-norm fonctions respectively are

investigated. Simulations show the effectiveness of these al-

gorithms.

Index Terms— Adaptive equalizers.

1. INTRODUCTION

Blind equalization is an important issue in modern commu-

nications. It is suitable for communication applications for

which sending periodically learning sequences may substan-

tially affect the quality of service. Blind equalizers endeavor

to filter transmitted signals without need to initializing se-

quences but only suppose a priori knowledge about some sta-

tistical properties of these signals.

To deal with this problem, the constant modulus algorithm

(CMA), pioneered by Godard [1] and extended later on [2–8],

has been extensively used over the last two decades, since

it is easy to implement and has good convergence proper-

ties [9, 10]. CMA minimizes a cost function related to sig-

nal amplitude, generally via the stochastic gradient descent

algorithm. However, with the evolution of requirements in

communications, CMA has shown its limits. Many exten-

sions of the CMA, together with new algorithms, have been

proposed for transmission of signals with non constant modu-

lus, such as quadrature amplitude modulated (QAM) signals.

The minimization of the CMA criterion does not solve satis-

factorily the equalization problem for QAM signals, since it

leads to large residual errors and constellation is recovered up

to a phase rotation. To overcome these drawbacks, other al-

gorithms like the multimodulus algorithm (MMA) [11], the

square contour algorithm (SCA) [12, 13] and the extended

CMA (ECMA) [14] have been proposed. The most inter-

esting extensions of the CMA are those based on hybrid ap-

proaches [6–8], where it is proposed to augment the standard

CMA cost function by a penalty term that takes into account

the location of constellation symbols. This penalty term is

often referred to as the constellation matching error (CME).

The algorithms based on criteria with CMA+CME structure,

are also called modified CMA (MCMA). CME functions are

generally, positive function, constrained to meet certain prop-

erties : symmetry around constellation coordinates, unifor-

mity (that is, even level of local maxima) and zero value at

constellation points. As CME examples, we can cite powers

of sine and cosine functions and polynomials [6].

In this work, we propose two CME terms leading to new cri-

teria. The first CME, is the �1-norm of a monic polynomial,

the zeros of which are constellation coordinates. So, it can

be considered as a particular criterion of the MCMA family

proposed in [7] and we will call it �1-MCMA. The second,

CME consists in a modified version of the Gaussian criterion

proposed in [5], where it was used in a dual mode and used

later as a CME in a hybrid form in [7], to the extended CMA

(ECMA) proposed by Li and Zhang [14] and obtain what we

will call Gauss-ECMA. The paper is organized as follows: in

section 2, we briefly recall the conventional CMA, the ECMA

and the MCMA. In section 3, we introduce our �1-MCMA

and Gauss-ECMA criteria, among others. Section 4 supplies

simulations that show the good performance of the proposed

algorithms.

2. PROBLEM STATEMENT AND BACKGROUND

The mathematical model for the receiver input at time k is

xk =
Lh∑
l=0

hlsk−l + nk (1)

and the equalizer output is

zk =
Le∑
l=0

w∗l xk−l, (2)

where sk, hk, nk and wk denote respectively the sym-

bols transmitted over the channel, the impulse response
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of the discrete channel, the noise and the impulse re-

sponse of equalizer at time index k. We introduce vectors

w = [w1, w2, ..., wLe
]T and xk = [xk, xk−l, ..., xk−Le+1]T ,

where (·)T denotes transpose. In the following, transpose

conjugate will be denoted by (·)H .

2.1. Constant Modulus Algorithm (CMA)

The standard CMA criterion for received symbols zk to be

minimized according to w is

J(w) = E

{(∣∣wHxk

∣∣2 −Rm

)2
}

with Rm =
E{|sk|4}
E{|sk|2} . We can be updated bu means of a gra-

dient descent algorithm as follows:

wk+1 = wk − μekxkxH
k wk, (3)

with ek = |zk|2 − Rm and μ the step size. It is known that

the CMA is blind to carrier phase.

2.2. Extended Constant Modulus Algorithm (ECMA)

The ECMA algorithm is a particular case of the generalized

constant modulus algorithms proposed in [14]. Introducing

the generalized complex modulus as

|zk|p = (|zkr|p + |zki|p)
1
p , (4)

for p ≥ 1, zkr and zki denoting the real and imaginary part of

zk respectively, the ECMA criterion is given by

JECMA(w) = E

{∣∣∣∣∣wHxk

∣∣2
4
−R4,2

∣∣∣2} , (5)

with R4,2 =
E{|sk|44}
E{|sk|24} . The learning rule for this algorithm is

wk+1 = wk − 4μ
(
|zk|24 −R4,2

) z3
kr − jz3

ki

|zk|24
xk . (6)

Unlike CMA, the ECMA, is phase sensitive and does not re-

quire additional phase recovery in steady-state operation.

2.3. Modified Constant Modulus Algorithm (MCMA)

MCMA criteria [6] are designed for QAM modulations. They

consist in adding a positive penalty term to the CMA. They

are of the form

J(w) = E

{(∣∣wHxk

∣∣2 −Rm

)2
}

+ β (g (zkr) + g (zki))

(7)

where g(·) is a positive function that cancels at constellation

coordinates and β is a tuning parameter. The corresponding

updating procedure is given by

wk+1 = wk − μ
(
ekxkxH

k wk + βψkxk

)
, (8)

with

ψk = g′(zkr)− jg′(zki) . (9)

There are several possible choices for g among which

gc(x) = cos2(
xπ

2d
) ,

with 2d the minimum distance between symbols.

gG(x) = 1−
M∑
l=1

e
−|x−sl|2

2σ2 .

Corresponding ψk for gc can be found in [6]. We shall refer

to MCMA with gc(x) and gG(x) penalty terms, as the Cos-

MCMA and the Gauss-MCMA respectively.

3. NEW CRITERIA

3.1. The �1-MCMA criterion

Here, the penalty term is the �1−norm of the monic poly-

nomial with zeros at constellation points coordinates. It is

inspired both by hybrid approaches [6] and by Li’s cost func-

tion [5] given by

J(w) = E

{
M∏
l=1

∣∣wHxk − sl

∣∣2} . (10)

where M is the constellation order (16, 32, 64,...). But, it has

been shown in [5] that, without an extremely good initializa-

tion, the adaptation rule using this criterion may diverge, for

high order constellations.

Our �1-MCMA criterion is given by equation (7) with

g�1(x) =
∏

ci∈A

|x− ci| , (11)

where ci are inphase or quadrature coordinate values. For the

�1-norm CME, we get

g′�1(z) =
∑
cj∈A

sign(z − cj)
∏

ci∈A,ci �=cj

|z − ci| .

We shall see on simulations, that despite it slightly violates

uniformity property, the �1-MCMA has good convergence

properties and high equalization performance compared to

other MCMA criteria. We can also notice that its CME is

somewhat similar to the MMA criterion, so we expect that it

will be able to correct phase rotations.

3.2. The g-ECMA criterion

We define the g-ECMA criterion as the sum of the ECMA

criterion JECMA (subsection 2.2) and the CME function g
(subsection 2.3) :

Jg−ECMA(w) = JECMA(w) + β (g(zkr) + g(zki)) .
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Depending on the choice of g, we get the Cos-ECMA, Gauss-

ECMA or �1-ECMA criteria. With these criteria we cumulate

advantages of the ECMA criterion that better accounts for the

QAM constellation shape than the standard CMA which is

specifically dedicated to PSK modulations, with constellation

zeros location constraint. We are going to show in the simula-

tion part that high performance gain is achieved in particular

with Gauss-ECMA.

4. SIMULATIONS

We consider 16-QAM symbols with uniform distributions and

chose a 20 taps long (Le = 20) equalizer. First, we com-

pare performance of the �1-MCMA criterion to those of the

conventional CMA, the Cos-MCMA and the Gauss-MCMA.

The channel we use, is frequency selective with impulse re-

sponse h1 = [1 0.1294 + 0.483j] [7]. In figures 1 to 4

steps sizes are ajusted to ensure the same asymptotic vari-

ance. We take β = 100
π for Cos-MCMA and Gauss-MCMA

as in [7] and β = 2 for the �1-MCMA and for the Gauss-

MCMA, σ = 0, 2. These choice of parameters are designed to

get good performance. All convergence curves, that give the

mean square error (MSE) in dB vs the iteration number, are

averaged over 200 Monte Carlo independent runs. In figure

1, the convergence properties of CMA, Cos-MCMA, Gauss-

MCMA and �1-MCMA are compared. We notice that �1-

MCMA performs slightly better than criteria with Cosine and

Gaussian CME penalties. It has faster convergence and lower

mis-adjustment. CMA alone cannot be adjusted to get as low

variance as other criteria. Simulations in figures 2 and 3 are

Fig. 1. Performance comparison of CMA, Cos-MCMA,

Gauss-MCMA and �1-MCMA for 16-QAM and channel h1

(SNR=30dB).

obtained with channel h2 = [0.9063 + 0.4226j 0.3214 +
0.3830j]. Parameters β and σ are the same as for h1 channel.

As it can be seen from the scatters of figure 2, in this case, a

phase correction loop is needed for CMA and Cos-MCMA,

while �1-MCMA, as expected, and Gauss-MCMA algorithms

converge without need of such a phase correction. We can

Fig. 2. (a) Constellation at the receiver side (16-QAM), (b)

the equalized constellation for MCMA without phase correc-

tion, (c) the equalized constellation for Cos-MCMA without

phase correction and (d) the equalized constellation for �1-

MCMA which automatically corrects phase rotation.

Fig. 3. Performance comparison of CMA, Cos-MCMA,

Gauss-MCMA and �1-MCMA for 16-QAM and channel h2

(SNR=30dB)

.

observe that the �1-MCMA convergence is faster than other

g-MCMA criteria.

Comparison of Gauss-ECMA, Cos-ECMA and �1-ECMA for

16-QAM symbols at SNR=30 dB is proposed in figure 4. It

illustrates the MSE (dB) vs the iteration number, for chan-

nel h1. Here, μ = 4.5 × 10−6 and β = 3 for �1-ECMA,

μ = 7.5× 10−6 for Cos-ECMA and μ = 1.5× 10−5, β = 3
and σ = 0.2 for Gauss-ECMA. Figure 4 shows that Gauss-

ECMA converges faster than �1-ECMA and Cos-ECMA.

The last simulations are concerned with the comparison of

mis-adjustments of ECMA, Gauss-ECMA, Cos-ECMA and

�1-ECMA using the channel h2. In figure 5, the parameters μ,

β and σ are chosen to ensure similar speed of convergence and

we compare the level of misadjustments of these algorithms

at steady-state. On figure 5, it is obvious that for the same

speed of convergence, the Gauss-ECMA shows best perfor-

mance since it converges to a much lower MSE. On the other

hand, contrarily to the MCMA case, both of the four algo-

rithms converge without need of a phase correction. Finally,
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Fig. 4. Performance comparison of Cos-ECMA, Gauss-

ECMA and �1-ECMA for 16-QAM and channel h1.

Fig. 5. Performance comparison of ECMA, Cos-ECMA,

Gauss-ECMA and �1-ECMA for 16-QAM and channel h2.

considering all the simulation (with CMA and ECMA), we

can assert that the Gauss-ECMA algorithm has the best per-

formance.

5. CONCLUSIONS

We have proposed two new hybrid adaptive blind equaliza-

tion criteria for QAM Signals. The first one (�1-MCMA), is

new in the sense that it adds a new CME to the CMA crite-

rion. The �1-MCMA has been compared to Cos-MCMA and

Gauss-MCMA and it shows good performance. Besides its

fast convergence, it is able to correct phase rotations. Our

second criterion (Gauss-ECMA) is new, since it is the first

time that a CME term is associated to the extended constant

modulus criterion, resulting in higher performance. A simu-

lation compared to ECMA and other g-ECMA criteria, show

the overall superiority of the Gauss-ECMA criterion. In the

other hand, using the ECMA as the amplitude term together

with a constellation matching error, has the advantage to cor-

rect the phase rotations independently of the CME choice.
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