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ABSTRACT

Two Newton-type algorithms using the generalized complex

modulus (GCM) criterion for blind equalization and carrier

phase recovery are proposed. First the partial Hessian and full

Hessian of the real GCM loss function with complex valued

arguments are calculated by second-order differential. Then

an adaptive pseudo Newton learning algorithm and a full New-

ton learning algorithm are designed. By using the matrix in-

version lemma, both Newton algorithms can be implemented

with a computational complexity of O(L2) efficiently, where

L is the length of equalizer. Simulation results demonstrate

that the two Newton algorithms can achieve automatic carrier

phase recovery and exhibit fast convergence rates.

Index Terms— Blind equalization, generalized constant

modulus, Newton algorithm, adaptive signal processing.

1. INTRODUCTION

The constant modulus algorithm (CMA) is widely used for

blind equalization of two dimensional modulation schemes

[1]. Stochastic gradient descent algorithms are commonly

used to minimize the constant modulus (CM) loss function.

However, the stochastic gradient method suffers from slow

convergence, which constitutes a significant drawback. It is

well known that the second-order Newton method has fast

convergence. Recently, several Newton-like algorithms min-

imizing the CM loss function are proposed [2][3]. Unfortu-

nately, the full Hessian of CM loss function at the minima

are intrinsically singular [1][3]. This intrinsic singularity pre-

vents one from using the Newton algorithm without precau-

tionary modifications [3].

The other flaw is that the CMA lacks the capability of re-

covering the carrier phase. To recover the carrier phase, an

additional rotator is required at the output of the CMA equal-

izer, which results in increasing the complexity of implemen-

tation of the receiver in steady-state operation. In [4], a family

of generalized CMAs (GCMA) was proposed by generaliz-

ing the definition of complex modulus. Since the generalized

complex modulus (GCM) is sensitive to phase, the GCMA

can achieve the phase recovery. However the GCMA is still
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based on stochastic gradient descent and exhibits poor con-

vergence performance.

In this paper, two Newton-type algorithms are proposed

to minimize the GCM loss function, which are referred to as

pseudo Newton-GCM and full Newton-GCM. Simulation re-

sults validate that the two Newton-type algorithms can recov-

ery the carrier phase and converge fast.

2. SYSTEM MODEL AND GENERALIZED
CONSTANT MODULUS CRITERION

2.1. System Model

Consider a baseband communication system described by

x(n) = s(n) ⊗ h(n) + v(n) (1)

where x(n) is the observed sequence, s(n) is the transmit-

ted data symbol, h(n) is the impulse response of the channel,

v(n) is zero-mean additive Gaussian white noise (AGWN),

and ⊗ denotes convolution. The source sequence s(n) is as-

sumed to be zero-mean, independently and identically dis-

tributed (i.i.d.). Define an L tap FIR equalizer with weights

w = [w0, w1, · · · , wL−1]T and a vector x(n) = [x(n), x(n−
1), · · · , x(n−L+1)]T with the superscript T denoting trans-

pose, the equalizer output sequence is given

y(n) = wHx(n) (2)

where the superscript H represents the conjugate transpose.

The equalizer w is designed to eliminate the inter-symbol in-

terference (ISI) and the aim of blind equalization is to recover

the source sequence without training sequences. In the rest

of this paper, when there is no possibility of confusion, the

notation is simplified by ignoring the sample index n.

2.2. The Generalized Constant Modulus Criterion

The well known constant modulus loss function for blind equal-

ization is given by [1]

J(w) = E
[(|y|2 − R2

)2
]

(3)

where | · | denotes the modulus of a complex variable and

R2 =
E[|s(n)|4]
E[|s(n)|2] is the dispersion constant.
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The CMA seeks a equalizer that minimizes the CM loss

function. The main drawback of the CMA is that it lacks the

capability of carrier phase recovery. Such flaw is attributed

to the complex modulus is insensitive to the phase, i.e., the

property
∣∣zejθ

∣∣ = |z| holds true for any phase angle θ.

Given a complex number z = zR + jzI , where zR and

zI represent the real and imaginary parts of z, the generalized

modulus of z is defined as [4]

|z|� =
(
|zR|� + |zI |�

)1/�

, � ≥ 1. (4)

When � = 2, the generalized complex modulus reduces to

the standard complex modulus. Note that
∣∣zejθ

∣∣
�
�= |z|� for

� �= 2, which means that the generalized modulus is phase

sensitive. Based on this property, the generalized constant

modulus criterion which is able to achieve carrier phase re-

covery for blind equalization is given by [4]

J�(w) = E
[(|y|2� − R�

)2
]

= E

[(∣∣wHx
∣∣2
�
− R�

)2
]

(5)

where R� is the dispersion constant of the GCMA depending

on � and the constellation of the source, and can be expressed

as

R� =
E

[|s(n)|4�
]

E [|s(n)|2� ]
. (6)

3. NEWTON ALGORITHMS FOR THE
GENERALIZED CONSTANT MODULUS CRITERION

In [4], a gradient learning algorithm minimizing GCM crite-

rion is given with � = 4, which is referred to as extended

CMA (ECMA). However, the gradient-based learning algo-

rithms suffer from slow convergence. The convergence rate

and tracking capacity is very important for practical com-

munication systems. In this paper, we will develop gradient

learning algorithms as well as adaptive Newton algorithms

minimizing GCM criterion for any value of �.

3.1. Gradient and Hessian of GCM Loss Function

First let us define

a(n) = yR(n) |yR(n)|�−2 − jyI(n) |yI(n)|�−2
(7)

and a(n) is abbreviated as a for convenience. The first-order

differential of the GCM loss function can be derived as

dJ�(w) = 2E
[
|y|2−�

�

(
|y|2� − Rl

) (
axT dw∗ + a∗xHdw

)]

where the superscript ∗ denotes the conjugate of a complex

number or vector. Hence the conjugate gradient and gradient

of J�(w) are given by

∇wJ�(w) =
∂J�(w)
∂w∗ = 2E

[
|y|2−�

�

(
|y|2� − Rl

)
ax

]
(8)

∇w∗J�(w) =
∂J�(w)

∂w
= 2E

[
|y|2−�

�

(
|y|2� − Rl

)
a∗x∗

]
.

(9)

It is clear that ∇wJ�(w) = (∇w∗J�(w))∗. For convenience

we define

bR(n) = |yR(n)|�−2 + (� − 2)y2
R(n) |yR(n)|�−4

(10)

bI(n) = |yI(n)|�−2 + (� − 2)y2
I (n) |yI(n)|�−4

. (11)

Sometimes bR(n) and bI(n) are abbreviated as bR and bI ,

respectively. We denote

f�(n) = |y|2−2�
�

(
(4 − �) |y|2� − (2 − �)Rl

)
|a|2

+
(
|y|2� − Rl

)
|y|2−�

� (bR − bI) (12)

g�(n) = |y|2−2�
�

(
(4 − �) |y|2� − (2 − �)Rl

)
a2

+
(
|y|2� − Rl

)
|y|2−�

� (bR + bI). (13)

Again, we use f�(n) and g�(n) to denote f� and g� for conve-

nience, respectively. Note that f� is a real number. By calcu-

lating the second-order differential of J�(w), we can get the

four L × L partial Hessian matrices:

Hww(w) =
∂2J�(w)
∂w∗∂wT

= E
[
f�xxH

]
(14)

Hww∗(w) =
∂2J�(w)
∂w∗∂wH

= E
[
g�xxT

]
(15)

Hw∗w(w) =
∂2J�(w)
∂w∂wT

= E
[
g∗� x

∗xH
]

(16)

Hw∗w∗(w) =
∂2J�(w)
∂w∂wH

= E
[
f∗

� x∗xT
]

(17)

Hww(w) is referred to as the leading partial Hessian. It

is clear that Hww(w) = (Hw∗w∗(w))∗ and Hww∗(w) =
(Hw∗w(w))∗. The 2L×2L full Hessian matrix consisting of

the four partial Hessian matrices is given by

H(w) =
[ Hww(w) Hww∗(w)

Hw∗w(w) Hw∗w∗(w)

]
. (18)

3.2. The Gradient Learning Algorithm

According to (8), the stochastic gradient can be written as

∇̂wJ�(w, n) = |y(n)|2−�
�

(
|y(n)|2� − Rl

)
a(n)x(n). (19)

Hence we obtain the stochastic gradient learning algorithm of

the GCM criterion

Δw = −μ∇̂wJ�(w, n) (20)

w(n + 1) = w(n) + Δw (21)

where μ is the step size. Its computational complexity is

O(L) per iteration. Although the stochastic gradient learn-

ing algorithm is quite popular due to its simplicity, it suffers

from slow convergence.
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3.3. The Pseudo Newton Learning Algorithm

The Newton algorithm exploits the second-order derivative of

the loss function to provide faster convergence. If the lead-

ing partial Hessian Hww(w) is adopted only, we can obtain

the pseudo Newton learning rule for GCM criterion (pseudo

Newton-GCM). The updated term Δw in the pseudo Newton

algorithm is given by

Δw = −μH−1
ww(w)∇̂wJ�(w, n) (22)

where 0 < μ < 1 is the step size. Directly computing the

inverse of Hww(w) will lead to a computational complexity

of O(L3) per iteration. According to (14), we obtain the rank-

1 updating structure of the leading partial Hessian Hww(w):

Hww(w, n) = λHww(w, n− 1) + (1− λ)f�(n)x(n)xH(n)
(23)

where 0 < λ < 1 is the forgetting factor. We can exploit such

rank-1 updating structure to reduce the computational com-

plexity. By using the well known matrix inversion lemma, we

obtain the recursive equation of H−1
ww(w, n):

H−1
ww(w, n) = λ−1H−1

ww(w, n − 1)

− λ−2H−1
ww(w, n − 1)x(n)xH(n)H−1

ww(w, n − 1)
[(1 − λ)f�(n)]−1 + λ−1xH(n)H−1

ww(w, n − 1)x(n)
.

(24)

H−1
ww(w) is initialized as H−1

ww(w, 0) = δI, where I is the

identify matrix, and δ > 0 is small enough so that the learn-

ing algorithm has reliable initial convergence. It is clear that

the computational complexity has been reduced to O(L2) per

iteration through the recursive computation of H−1
ww(w, n).

3.4. The Full Newton Learning Algorithm

Unlike the pseudo Newton algorithm only utilizing the lead-

ing partial Hessian, the full Newton algorithm adopts all of the

four partial Hessian matrices. In other words, the full Newton

algorithm exploits the full Hessian. The full Newton learning

rule for GCM criterion (full Newton-GCM) is

[
Δw
Δw∗

]
= −μH−1(w)

[ ∇̂wJ�(w, n)
∇̂w∗J�(w, n)

]
(25)

where H(w) is the full Hessian. According to (14), (15), (16)

and (17), we obtain the following recursion for updating the

value of the full Hessian matrix:

H(w, n) = λH(w, n − 1)+

(1 − λ)
[

f�(n)x(n)xH(n) g�(n)x(n)xT (n)
g∗� (n)x∗(n)xH(n) f∗

� (n)x∗(n)xT (n)

]
. (26)

Eq. (27) at the top of the next page means that the full Hessian

have the rank-2 update structure. Hence the inverse of the full

Hessian matrix can be updated by using the matrix inversion

lemma twice. The recursive equation for H−1(w, n) is given

by (28) and (29). H−1(w, 0) is initialized as δI with δ > 0
being small enough. According to (28) and (29), the com-

putational complexity of the full Newton algorithm is O(L2)
per iteration.

Two important parameters in the Newton algorithms are

the step size μ and forgetting factor λ. Although the two pa-

rameters can be selected independently, we would like to pro-

posed a rule of thumb for the selection of μ and λ. Both the

inverse of μ and the inverse of 1 − λ are, roughly speaking,

measures of the memory of the algorithms. We hope that the

two measures of memory equal. Thus we get a rule for the

selection of μ and λ:

μ + λ = 1. (30)

4. SIMULATION RESULTS

The widely used performance index of an equalizer is the ISI

(inter-symbol interference) defined as

ISI(dB) = 10log10

(∑
i |ηi|2 − max|ηi|2

max|ηi|2
)

where ηn = hn ⊗ wn is the combined channel-equalizer

response. However, the conventional ISI cannot reflect the

intra-interference between the in-phase component and the

quadrature component caused by the carrier phase error. To

depict both the inter-symbol interference and intra-symbol in-

terference due to carrier phase error, the ISI performance in-

dex is modified as

Modified ISI(dB) = 10log10

(∑
i γ2

i − max γ2
i

max γ2
i

)

whereγγγ =
[

Re(ηηη)
Im(ηηη)

]
is a real vector withηηη = [η0, η1, · · · ]T .

A typical FIR voice-band communication channel with

impulse response {−0.005−j0.004, 0.009+j0.03, −0.024−
j0.104, 0.854+j0.52, −0.218+j0.273, 0.04− j0.0749, −
0.016 + j0.02} is adopted [4]. To achieve phase recovery,

we set � = 4. The transient behavior and steady-state perfor-

mance of ECMA [4], pseudo Newton-GCM and full Newton-

GCM are studied.

The length of the equalizer is set to L = 9. The input

data symbol comes from a QAM-16 constellation. The white

Gaussian noise is added so that the SNR is 30 dB. To ob-

tain the same steady-state performance, the step sizes are set

to μ = 1.2 × 10−5 for ECMA, and μ = 0.002 for pseudo

Newton-GCM and full Newton-GCM. The forgetting factor

and the parameter of the initial inverse of Hessian of both

Newton algorithms are set to λ = 1 − μ and δ = 10−2, re-

spectively.

Fig.1 shows the equalized data symbols of CMA, Newton-

like CMA [2], ECMA, pseudo Newton-GCM and full Newton-
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[
f�(n)x(n)xH(n) g�(n)x(n)xT (n)
g∗� (n)x∗(n)xH(n) f∗

� (n)x∗(n)xT (n)

]
= α(n)

[
x(n)
x∗(n)

] [
xH(n),xT (n)

]
+ β(n)

[
x(n)

−x∗(n)

] [
xH(n),−xT (n)

]

with α(n) =
1
2

[f�(n) + g�(n)] , β(n) =
1
2

[f�(n) − g�(n)] . (27)

G−1(w, n) = λ−1H−1(w, n − 1) −
λ−2H−1(w, n − 1)

[
x(n)
x∗(n)

] [
xH(n),xT (n)

]H−1(w, n − 1)

[(1 − λ)α(n)]−1 + λ−1 [xH(n),xT (n)]H−1(w, n − 1)
[

x(n)
x∗(n)

] (28)

H−1(w, n) = G−1(w, n) −
G−1(w, n)

[
x(n)

−x∗(n)

] [
xH(n),−xT (n)

]G−1(w, n)

[(1 − λ)β(n)]−1 + [xH(n),−xT (n)]G−1(w, n)
[

x(n)
−x∗(n)

] (29)
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Fig. 1. Constellation of signals at steady-state.

GCM at steady state. One can find that both CMA and Newton-

like CMA converge to rotated solutions, while the three meth-

ods using GCM criterion can achieve phase recovery. Fig.2

illustrates the learning curve of the ensemble-averaged modi-

fied ISI over 200 independent trials at SNR=30 dB. Fig.2 val-

idates that the full Newton-GCM has the fastest convergence

rate, while the gradient-based ECMA has the slowest conver-

gence rate. It is worthy to note that the full Newton-GCM

performs much better than the pseudo Newton-GCM.

5. CONCLUSION

To overcome the two drawbacks of CMA, two Newton algo-

rithms which are referred to as the pseudo Newton-GCM the

full Newton-GCM are presented. The pseudo Newton-GCM

uses the leading partial Hessian, while the full Newton-GCM

uses the full Hessian of the GCM loss function. The two pro-

posed Newton algorithms are able to recover the carrier phase

and exhibit much faster convergence rates than the ECMA.
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Fig. 2. Learning curve of the modified ISI

Moreover, both Newton algorithms have efficient online re-

cursive forms with a computational complexity of O(L2),
where L is the length of the equalizer.
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