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ABSTRACT

We consider blind equalization for block transmissions over
the frequency selective Rayleigh fading channel. In the ab-
sence of pilot symbols, the receiver must be able to perform
joint equalization and blind channel identification. Relying on
a mixed discrete-continuous state-space representation of the
communication system, we introduce a blind Bayesian equal-
ization algorithm based on a Gaussian mixture parameteri-
zation of the a posteriori probability density function (pdf) of
the transmitted data and the channel. The performances of the
proposed algorithm are compared with existing blind equal-
ization techniques using numerical simulations.

Index Terms— Frequency selective channels, wireless
fading channels, block transmissions, blind equalization.

1. INTRODUCTION

The main advantage of blind transmissions is that they max-
imize the throughput, since no pilot symbols are needed to
estimate the channel.
Blind equalizers were first proposed by Sato [1] and Go-

dard [2] using finite impulse response filters. However, these
methods suffer from local and slow convergence and may fail
on ill-conditioned or time-varying channels.
Since the advent of turbo-equalization [3], there has

been a renewed interest in symbol-by-symbol soft-input soft-
output (SISO) equalization. Two main approaches have been
proposed so far to achieve SISO equalization in a blind or
semi-blind context. The first approach relies on fixed-lag
smoothing [4]. The second approach uses fixed-interval
smoothing [5]-[6]. All the aforementioned methods employ
a trellis description of the intersymbol interference (ISI) [7],
where each discrete ISI state has its associated channel esti-
mate.
In this paper, we will consider fixed interval smoothing,

which is adapted to block-oriented communications. After
modeling the ISI and the unknown channel at the receiver
side, we obtain a combined state-space formulation of our
communication system. Then, we introduce a smoother
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Fig. 1. Data format.

based on Gaussian mixtures to perform blind SISO equaliza-
tion. Finally, our method is compared with several existing
blind equalization techniques through numerical simulations.
NC(x : m,P) will denote a complex Gaussian distribution
of the variable x, with meanm and covariance matrixP.

2. SYSTEMMODEL

The transmitted data are organized in bursts containingB bits,
as illustrated in Fig. 1. For the ease of exposition, we consider
binary phase shift keying (BPSK) modulation, so that the bit
transmitted at instant k, bk ∈ {−1, +1}. The preamble (resp.
tail) is a short all-one vector of length equal to the channel
memory, used to initialize the first (resp. final) ISI state to a
known value. Since blind equalization is of interest, no addi-
tional pilot symbols are inserted in the data stream.
We assume a discrete Rayleigh fading channel of mem-

ory L. The elements of the impulse response {ci
k}

L
i=0 are

modeled as independent zero-mean complex Gaussian ran-
dom variables. The received complex noisy observation at
instant k has the form

yk =
L∑

i=0

ci
kbk−i + nk, (1)

where nk is a complex white Gaussian noise sample with
single-sided power spectral densityN0.
We define the ISI state as the subsequence taking 2L dis-

crete values, sk = [bk, bk−1, . . . , bk−L+1]
T . Let fk denote

the ISI state transition function defined by the relation

sk = fk(sk−1, bk).

2801978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009



It is well known that fk can be represented graphically by a
trellis diagram containing 2L states [7]. We define the chan-
nel state as xk = [c0

k, c0
k−1, c

1
k, c1

k−1, . . . , c
L
k , cL

k−1]
T . A state

space representation is obtained for (1) as⎧⎪⎨
⎪⎩

sk = fk (sk−1, bk)

xk = Fxk−1 + πk

yk = Hk(sk−1, sk)xk + nk,

(2)

where the second equation corresponds to an order two au-
toregressive channel model [8] with a Gaussian process noise
vector πk and the observation matrix has the form

Hk(sk−1, sk) = [bk, 0, bk−1, 0, . . . , bk−L, 0]T .

3. BLIND SISO EQUALIZATION USING A
GAUSSIAN MIXTURE APPROACH

In this section, we derive a fixed-interval smoother by prop-
agating a mixture of N Gaussians per ISI state forward and
backward in the ISI trellis, following an idea originally intro-
duced in [9]. The ISI state sk and the channel state xk will be
jointly estimated. A posteriori probabilities for the bits bk are
obtained by a simple marginalization step.

3.1. Forward filtering

A recursive expression of p(sk,xk|y1:k), where y1:k =
(y1,y2, . . . ,yk) is obtained by noting that

p(sk,xk,y1:k) =
∑
sk−1

p(sk|sk−1)p(yk|dk(sk−1, sk),xk)×

∫
p(xk|xk−1)p(sk−1,xk−1,y1:k−1)dxk−1,

(3)

where the discrete summation extends over the states sk−1,
for which a valid transition (sk−1, sk) exists. In general, the
multiplications and integration in (3) cannot be expressed in
closed form, therefore we introduce the following Gaussian
mixture parameterization at instant k − 1

p(sk−1,xk−1,y1:k−1) =

N∑
i=1

αi(sk−1)NC
(
xk−1 : xi

k−1|k−1(sk−1),P
i
k−1|k−1(sk−1)

)
.

(4)

In (4), each discrete state sk−1 is associated with a mixture of
N Gaussians, whereN is a design parameter of choice.

Theorem 3.1 A closed form expression of p(sk,xk,y1:k) is
obtained as

p(sk,xk,y1:k) =

∑
sk−1

N∑
i=1

αi(sk−1, sk)NC
(
xk : xi

k|k(sk−1, sk),Pi
k|k(sk−1, sk)

)

(5)

where the means xi
k|k(sk−1, sk) and covariance matrices

Pi
k|k(sk−1, sk) associated with the state transition (sk−1, sk)

are obtained from the following recursions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x
i
k|k−1(sk−1) = Fx

i
k−1|k−1(sk−1)

P
i
k|k−1(sk−1) = FP

i
k−1|k−1(sk−1)F

H + Q

K
i
k(sk−1, sk) = P

i
k|k−1(sk−1)Hk(sk−1, sk)H

“
Hk(sk−1, sk)Pi

k|k−1(sk−1)Hk(sk−1, sk)H + R
”−1

x
i
k|k(sk−1, sk) = x

i
k|k−1(sk−1)+

K
i
k(sk−1, sk)

“
yk −Hk(sk−1, sk)xi

k|k−1(sk−1)
”

P
i
k|k(sk−1, sk) = P

i
k|k−1(sk−1)

−K
i
k(sk−1, sk)Hk(sk−1, sk)Pi

k|k−1(sk−1)

and the weights αi(sk−1, sk) are given by

α
i(sk−1, sk) = α

i(sk−1)p(sk|sk−1)×

NC(yk :Hk(sk−1, sk)xi
k|k−1(sk−1),

Hk(sk−1, sk)Pi
k|k−1(sk−1)Hk(sk−1, sk)H + R).

(6)

The proof is obtained from standard Kalman filtering tech-
niques after injecting (4) into (3).

3.2. Complexity reduction algorithm (CRA)

A problem with (5) is that each discrete state sk is now asso-
ciated with a mixture of more than N Gaussians. This means
that the number of terms in the Gaussian mixture will grow
with time. In order to keep the computational complexity con-
stant for each time instant, we need to approximate the exact
expression given by (5) as

p(sk,xk,y1:k) ≈
N∑

i=1

αi(sk)NC
(
xk : xi

k|k(sk),Pi
k|k(sk)

)
,

so that againN Gaussians with weightαi(sk), mean xi
k|k(sk)

and covariance Pi
k|k(sk), i = 1, . . . , N are associated with

each state sk, as in (4). We do this by applying the CRA
proposed in [10]. Assume thatN1 (resp. N2) is a multivariate
Gaussian, whose weight, mean and covariance are given by
w1, x1,P1 (resp. w2, x2, P2). In [10], a practical measure of
similarity between the two densities is given by

D = w1w2 [I(N1||N2) + I(N2||N1)] ,

where I(.||.) denotes the Kullback-Leibler distance. Then,
pairs of similar Gaussians with minimal D are repeatedly
merged untilN Gaussians subsist using the approximation

w1NC(xk : x1,P1)+w2NC(xk : x2,P2) ≈ wNC(xk : x,P),

where
w = w1 + w2

x =
w1x1 + w2x2

w1 + w2
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P =
w1

w1 + w2

[
P1 + (x1 − x)(x1 − x)H

]
+

w2

w1 + w2

[
P2 + (x2 − x)(x2 − x)H

]
.

3.3. Backward filtering

Let T denote the total number of available observations and
yk+1:T = (yk+1,yk+2, . . . ,yT ). A time-reversed version of
the forward filter in Sec. 3.1 can also be derived.

Theorem 3.2 Assume that the following Gaussian mixture
parameterization

p(yk+2:T |sk+1,xk+1) =

N∑
i=1

βi(sk+1)×

NC
(
xk+1 : xi

k+1|k+2:T (sk+1),P
i
k+1|k+2:T (sk+1)

)
.

(7)

is available at instant k + 1. A closed form expression of
p(yk+1:T |sk,xk) is obtained as

p(yk+1:T |sk,xk) =
∑
sk+1

N∑
i=1

βi(sk, sk+1)×

NC
(
xk : xi

k|k+1:T (sk, sk+1),P
i
k|k+1:T (sk, sk+1)

)
,

(8)

where the means xi
k|k+1:T (sk, sk+1) and covariance matri-

ces Pi
k|k+1:T (sk, sk+1) associated with the state transition

(sk, sk+1) are obtained from the following recursions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K
i
k+1(sk, sk+1) = P

i
k+1|k+2:T (sk+1)Hk+1(sk, sk+1)

H×“
Hk+1(sk, sk+1)P

i
k+1|k+2:T (sk+1)Hk+1(sk, sk+1)

H + R
”−1

x
i
k+1|k+1:T (sk, sk+1) = x

i
k+1|k+2:T (sk+1)+

K
i
k+1(sk, sk+1)

“
yk+1 −Hk+1(sk, sk+1)x

i
k+1|k+2:T (sk+1)

”

P
i
k+1|k+1:T (sk, sk+1) = P

i
k+1|k+2:T (sk+1)−

K
i
k+1(sk, sk+1)Hk+1(sk, sk+1)P

i
k+1|k+2:T (sk+1)

x
i
k|k+1:T (sk, sk+1) = Fx

i
k+1|k+1:T (sk, sk+1)

P
i
k|k+1:T (sk, sk+1) = FP

i
k+1|k+1:T (sk, sk+1)F

H + Q

and the weights βi(sk, sk+1) are given by

βi(sk, sk+1) = βi(sk+1)p(sk+1|sk)×

NC(yk+1 : Hk+1(sk, sk+1)x
i
k+1|k+2:T (sk+1),

Hk+1(sk, sk+1)P
i
k+1|k+2:T (sk+1)Hk+1(sk, sk+1)

H + R).

Again, we need to apply the CRA of Sec. 3.2 to (8), so
that p(yk+1:T |sk,xk) admits the desired form

p(yk+1:T |sk,xk) ≈
NX

i=1

β
i(sk)NC

“
xk : xi

k|k+1:T (sk),Pi
k|k+1:T (sk)

”
.

3.4. Smoothing

Following [9], a two-fi lter smoothing formula is obtained as

p(sk, sk+1,xk,y1:T ) = p(sk+1|sk)p(sk,xk, y1:k)×Z
p(xk+1|xk)p(yk+1|dk+1(sk, sk+1),xk+1)

× p(yk+2:T |sk+1,xk+1)dxk+1

Theorem 3.3 Using the Gaussian mixture approximations for the
forward and the backward filter introduced in Sec. 3.1 and Sec. 3.3,
respectively, a closed form expression of p(sk, sk+1,xk,y1:T ) is ob-
tained as

p(sk, sk+1,xk,y1:T ) =

NX
i=1

NX
j=1

σ
i,j(sk, sk+1)NC

“
xk : xi,j

k|1:T (sk, sk+1),P
i,j

k|1:T (sk, sk+1)
”

,

(9)

where the covariances associated to transition (sk, sk+1) are

P
i,j

k|1:T (sk, sk+1) = P
j

k|k+1:T
(sk, sk+1)×

[Pj

k|k+1:T
(sk, sk+1) + P

i
k|k(sk)]−1

P
i
k|k(sk)

and the means associated to transition (sk, sk+1) are

x
i,j

k|1:T (sk, sk+1) = P
i,j

k|1:T (sk, sk+1)×
h
P

i
k|k(sk)−1

x
i
k|k(sk)+

P
j

k|k+1:T
(sk, sk+1)

−1
x

j

k|k+1:T
(sk, sk+1)

i
,

for 1 ≤ i, j ≤ N . The expression of the weights is given by

σ
i,j(sk, sk+1) = α

i(sk)βj(sk+1)p(sk+1|sk)bi,j(sk, sk+1)

×NC(yk+1 : Hk+1(sk, sk+1)x
j

k+1|k+2:T
(sk+1),

Hk+1(sk, sk+1)P
j

k+1|k+2:T
(sk+1)Hk+1(sk, sk+1)

H + R).

The coefficient bi,j(sk, sk+1) has the form (10) at the bottom of the
page.

bi,j(sk, sk+1) =
1

π2(L+1) det
[
P

j

k|k+1:T (sk, sk+1) + Pi
k|k(sk)

]×

exp

{
−

[
xi

k|k(sk)− x
j

k|k+1:T (sk, sk+1)
]H [

P
j

k|k+1:T (sk, sk+1) + Pi
k|k(sk)

]−1 [
xi

k|k(sk)− x
j

k|k+1:T (sk, sk+1)
]}

.

(10)
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Since we are interested in soft-output equalization, we
must compute smoothed bit-by-bit marginal probabilities. Let
B

(m)
k be the set of state transitions (sk−1, sk) such that the
information bit bk = m, withm = 0, 1. Taking Eq. (9) at in-
stant k − 1 and marginalizing out the vector xk−1, we obtain

p(bk = m|y1:T ) ∝
∑

(sk−1,sk)∈B
(m)
k

N∑
i=1

N∑
j=1

σi,j(sk−1, sk).

(11)

4. NUMERICAL RESULTS

We consider a memory-2 Rayleigh fading channel simulated
with the method introduced in [11]. The standard deviations
of the resulting three complex processes (c0

k, c1
k, c2

k) are set at
(0.407, 0.815, 0.407). The block size is B = 100 bits, with
a preamble and a tail of length 2 bits. We assume that each
data block is affected by an independent channel realization.
Eb denotes the average energy per bit.
We compare the bit error rate (BER) of three blind

equalizers. The first equalizer is the constant modulus al-
gorithm (CMA) [2], iterated 50 times back and forth on
each data block, in order to avoid the slow convergence prob-
lem.Differential encoding of the transmitted data was used
only for the CMA equalizer, to solve the phase ambiguity
inherent in this method. The second blind equalizer is the
proposed Gaussian mixture smoother in the degenerate case
where the channel estimation is performed with only N = 1
Gaussian per discrete ISI state. Our method then reduces to a
fixed-interval (instead of fixed-lag) version of the algorithm
proposed in [4]. Finally, the third blind equalizer is the pro-
posed Gaussian mixture smoother, with a mixture of N = 2
Gaussians associated with each discrete ISI state. The second
and the third equalizer operate on the conventional 4-state ISI
trellis [7]. Fig. 2 illustrates the BER on a fast fading chan-
nel with normalized fading rate BdT = 10−2. Our method
with N = 2 attains performances close to equalization with
perfect channel state information (CSI).
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