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ABSTRACT

We propose an application of the Expectation-Maximization
(EM) algorithm to the problem of blind estimation of single-
input multiple-output (SIMO), finite-impulse-response (FIR)
channels. We first assume Gaussian input to formulate an EM-
based estimation of the signal subspace of the output
covariance matrix. This Gaussian assumption allows us to
utilize knowledge from EM-based probabilistic principle
component analysis (P-PCA). Next, we show that the
equilibrium point of the EM iteration equations is reached
without the Gaussian assumption, which suggests usage of non-
Gaussian communication input signals. The estimated signal
subspace is then utilized to identify the channels. In principle,
the proposed method yields the same channel estimates as the
widely-known subspace method, but is computationally more
efficient. In addition, unlike typical EM applications, the
proposed scheme is free from cumbersome parameter
initialization issue, which greatly increases flexibility of the
proposed scheme.

Index Terms— Blind channel estimation,
method, Expectation-Maximization (EM)
probabilistic principle component analysis (P-PCA)

subspace
algorithm,

1. INTRODUCTION

A number of algorithms have been developed to blindly
estimate SIMO FIR channels. Among those based on second-
order statistics, the popular subspace method [1] has many
favorable properties, such as excellent robustness to noise and
compatibility with colored input signals. However, it involves
evaluation of the output covariance matrix followed by eigen-
decomposition of it, hence, is not computationally very
efficient when the channel order is large or there are many
output observations.

In this paper, a new subspace-based method utilizing the
Expectation-Maximization (EM) algorithm is proposed. Here,
the signal subspace of the output covariance matrix is
estimated using the EM algorithm. Then the FIR channels are

identified by fitting the filter subspace onto the signal subspace.

This EM-based method retains all the favorable features of the
subspace method mentioned above, with additional benefit
being computationally more efficient because it avoids having
to evaluate the output covariance matrix. Because of the local
convergence nature of the EM algorithm, the estimated
subspace basis has dependency on initialization of the EM
iteration. However, all these bases do span the same subspace,
which explains why the final channel estimates of the proposed
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scheme do not depend on EM initialization.

If we assume isotropic Gaussian input and view it as the
latent variable, the probabilistic principle component analysis
(P-PCA) [3] technique is directly applicable to estimate to the
signal subspace. However, our goal is to use possibly non-
Gaussian communication signals (white or colored) as the input.
It is shown that the equilibrium point of the EM iteration
equations is reached without the Gaussian assumption, which
suggests usage of non-Gaussian communication input signals.

To demonstrate the above points, numerical simulation is
performed with QPSK and 16QAM signals (white or colored)
with randomly generated SIMO FIR channels while the E-step
initialization for the signal subspace is held unchanged. The
proposed scheme showed no miss-convergence and good
agreement with the standard subspace method.

Most prior work on applying EM to blind channel
estimation problems can roughly be classified into semi-blind
estimation [4], or joint channel and sequence estimation [5]
which typically has dependency on symbol constellation.
Application to blind SIMO FIR estimation does not seem to be
previously proposed, to the best of the authors’ knowledge.

2. THE SIMO FIR CHANNEL MODEL

In the 1xM SIMO FIR channel model, the white or colored
input s(n)eC at time n and the output x(n)e C¥ have a

convolutional relationship

x(n) = gh(l)s(n —l) + v(n) s

where h(l)eCM ,[€[0,L], is the channel coefficient vector
with FIR channel order L, and v(n) e C¥ is the observation
noise, uncorrelated with x(n), that follows the M-variate
isotropic Gaussian distribution with variance o?. By stacking
successive D outputs as x:[x(n)r, x(n—l)T, R x(n—DH)T]T, with
[-]” denoting transpose, we have

x=Hs+v, (1)
s=[s(n),s(n-1),---,s(n—D—-L+D]"
v=[v(n),v(in-D)7,--- v(n—-D+1)T]"
and H is an MD X (L+D) filtering matrix constructed as

h(0) -+ h(L)
H= . 2)
h(0) --- h(L)

where

The output covariance matrix can then be written as
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R=E[xx]=HE[ss" TH" + ol p ,

where E[-] denotes mathematical expectation, [-]” is complex

transpose, and I is the identity matrix of size K. The objective

of blind multi-channel estimation is to identify
h=[h(0)",h(1)",---,h(L)"]",

under the assumption that only x(n) is observable. Full column
rank, L+D, is assumed on H . This results from the
identifiability of h that the L-th order polynomials constructed
from the rows of [h(0), h(1), ---, h(L)] are coprime [1].

3. SIGNAL SUBSPACE AND P-PCA

In this section, we show equivalence between the signal
subspace of the output covariance matrix R and the principle
subspace in the P-PCA framework, assuming that x is an
isotropic Gaussian.

3.1. Signal Subspace

The output covariance matrix R has the eigen-
decomposition R = UAU# , where U is a unitary matrix whose
columns are the eigenvectors of R, and A is a diagonal matrix
whose diagonal elements are the eigenvalues of R. We can
further decompose it into two terms

R=UAU =U,A, U7 +U,A, U,

A1 0

using U=[U, | U,] and A:[~ ........ } ,

where the diagonal elements of A, are the largest L+D
eigenvalues, those of A, are the rest of the eigenvalues, and the
columns of U, and U, are the eigenvectors corresponding to A
and A, respectively. Then the signal subspace of R is defined
by the subspace spanned by the columns of U denoted by
Span{U,}. In addition, it is straightforward to show that H and
span the same subspace, that is

Span{U,} =Span{H} . 3)

3.2. Probabilistic Principle Component Analysis (P-PCA)

In P-PCA [3] an observed data pointy € C? is related to a latent

variable z € C¥, k < d, through the linear mapping
y=Wyz+pn+eg, “)

where W, € C¥* is a matrix whose columns span the principle

subspace of y, p is the data mean, and € is the observation
noise. Both the latent variable and the noise are assumed to
follow zero mean isotropic Gaussian distributions of the form
p(z)= N(z]0,I;) and p(e)= N(g]|0,04,) . The marginal

likelihood can be obtained by integrating the conditional
likelihood over the latent variable, which has the form

Py Wpo?) = j' P12 W.p.02) pl(z)dz
=N(y|p,WW? +021,) , (%)

where W is an estimate of W,. This marginal distribution is
again Gaussian because the linear mapping (4) corresponds to a
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linear-Gaussian model. For a data set Y=[y;, y,, **, yn] € C*V
with N observations, the marginal likelihood is simply a
product of (5) over the all data points because these are
assumed to be independent, yielding log likelihood of the form

N
Inp(Y |W,p.02) =Y In N (y, |, WW" +021,). (6)
n=l1
Comparing (1) and (4) we see that the columns of H actually
span the principle subspace of {x} if s is viewed as the latent
variable and assumed to be an isotropic Gaussian. Therefore,
the maximum-likelihood (ML) solution of H can be obtained
through P-PCA by maximizing (6) with respect to W="H , and
with p set to zero.

4. EM ALGORITHM FOR P-PCA

Although direct maximization of (6) with regard to W has a
closed-form solution, an EM algorithm [2] can still be derived
for iterative maximization [3]. This avoids explicit calculation
of the data covariance matrix and its eigen-decomposition,
hence, can lead to substantial computation savings especially if
k«<d.

The EM algorithm in general alternates the following two
steps from some initial (old) parameter estimates 0,, until
convergence is achieved.

Q(eveold) =E. [lnp(Y= z | e) | 9alaf]
eold <~ elmw =arg méiX Q(eaeold)

E-step:
M-step:

To derive the EM algorithm for estimation of the signal
subspace using P-PCA, the parameter vector 0 is replaced by
(n=0, W, avz), also, y, z and ¢ are replaced by x, s and v. Here,
we can directly apply results from [3]. Maximization with
respect to W and o, yields the M-step equations

-1
N N
Wnew :|:ZXHE[SH Xn]H:H:ZE[SnSnH X,,]:| P (7)
n=1 n=1
O-\g,new =
Li{ x| —2E[s,|x, 17 W¥x +Tr(E[s s, |x ]W”W)} (8)
ND n:] n n n n nvn n
where

Els, | x,1= (WHW + 021, W¥x,
Els,s) | x,]1=0}(W/W +071,)™" + E[s, | x,]E[s, | x,]7,
are calculated in the E-step with parameter values fixed to their

old values. It should also be noted that, for zero noise limit (o,
— 0) we can still obtain a valid EM-like algorithm [6] given by

Q = E[S]=(W/W)'W/X 9)
M-step: W,.., = XQ7 (QQH7)! (10)

where X=[x, X, -+, xy] € C**V and E[S]=[ E[s[x,], E[sx.],
o, E[sylxy] ] € CEAPXN

E-step:

4.1. EM Equilibrium Point
By substituting (9) into (10), we have the recursion

W = XXIW (W XXTW) WHW |



For sufficiently large N, (1/N)XX"=(1/N)Y. " x,x!/ becomes

E[xnan] = W,R,W,” by the law of large number, with R=
E[s,s,"] and 6,> — 0. Thus the recursion can be rewritten as

W = WoR, Wl W(WHWR, W W) WHW . (11)

To find the equilibrium point of (11), we express W in the
following form

W =W,U+AW, (12)

where U is an arbitrary unitary matrix representing the
rotational ambiguity inherent in P-PCA. Substituting (12) into
(11) and, to focus on local stability, ignoring the second-order
terms of AW yields

W, = WoU + W (W W)W AW . (13)

Here the second term is the orthogonal projection of columns
of AW onto the space spanned by columns of W, Span{W,}.
Therefore, the EM equilibrium point (or rather, space) can be

written using an arbitrary (L+D)x(L+D) matrix A as
Wi = WoA, A e CErPXULD) (14)

This has an interpretation that the EM iteration works so as to
bring columns of W into Span{W,}.

Also, we note that the EM iteration equations (9) into (10)
are derived based on the Gaussian assumption on the input.
Nevertheless, the equilibrium point (14) is reached by non-
Gaussian, colored input signals too. This actually agrees with
simulation results we will soon examine.

5. SIGNAL SUBSPACE FITTING

As can be seen from the EM equilibrium point (14) (and (13)),
the estimate of W is subject to latent space rotation U and
uncertainty within Span{Wy}. In other words, the likelihood
function (6) is multi-modal, causing estimate of W be
dependent on its EM initialization. In order to avoid this
initialization issue, we perform subspace fitting so that the P-
PCA estimate of W, denoted by Wpc,, and the filtering matrix
‘H in (2) span the same signal subspace. This can be achieved
by maximizing the following quantity

Maximize J(h)= ZHHHWPCA,,-"Z

as suggested in [1], where Wp.,; denotes the i-th orthonormal

basis of Wpc,, which is obtained using, for example, the Gram-
Schmidt orthogonalization procedure. We now apply the
structural relation described in Lemma 1 in [1] to the above
equation to get

2 2
H& _ H
P AL ORI 1AV
i i

T T
;o 0 O p
where WPCA,,'Z
T T
®Wio 7 Oipy
~ Tl T T T
Weca,i =[0]0,0; 1,0, 541 .

Therefore, the maximization problem is equivalent to
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h = argmax J(h) = argmaxh” [ZWPCA W, ,-]h ,
h h " ? ’

under the constraint ||h||2 = 1, which is easily implemented by
looking for the eigenvector corresponding to the largest
eigenvalue of Y Whe Wity -

6. COMPUTATIONAL COMPLEXITY

We focus on computational complexity in computation of the
signal subspace because it is the computationally most
demanding step. Direct eigen-decomposition involves explicit
evaluation of the output covariance matrix O(Nd2)= O(N(MD)Z).
This typically exceeds eigen-decomposition O(d’)=0((MD)?)
because, in most practical cases, there are more observations
than its dimensionality, that is, d < N, or MD < N. The EM-
based P-PCA does not construct the covariance matrix
explicitly. Instead the most demanding steps are those
involving sums over the data set that are O(Ndk)=O(NMD
(L+D)). For large d, and k < d, this can be a significant saving,
and can offset the iterative nature of the EM algorithm. In the
SIMO FIR cases, the EM-based estimation is very efficient for
cases where M is large, and D>L. Computation of subspace
fitting involves eigen-decomposition O(M3(L+1)3), which
typically is much smaller than computation of the signal
subspace involving O(Ndk)=O(NMD (L+D)). Matrix inverses
that appear in (9) and (10) are taken on Toeplitz matrices,
therefore algorithms involving only O((L+D)2) are available.

7. SIMULATIONS

Numerical simulations were performed with SIMO FIR
channels of L=7 (8 taps), M=4 and D=15. To stress that the
local convergence nature of the EM-based P-PCA is avoided,
the channel coefficients h e CM+) are generated randomly by
drawing a sample from complex normal Gaussian distribution
every time, while the E-step initialization W,,;, € CMP*(1+M) jg
held constant at
Wy e Wi
“[im'tz (15)
Wy e Wi

where

[w07”'9wL]=

1 -1 1 -1 1 -1 1 -1

The number of input symbols used to generate one estimate is
N=1000. The statistical metrics are either mean, sum of mean
and the standard deviation, or the maximum of the normalized
squared estimation error (NSE) over 50 estimates, where the
normalized squared error for the i-th estimate given by

2
"htrue

where f;, is a complex constant that compensates for the

NSE = min |8 =By ’
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Fig.1 Channel estimation error versus EM iterations for various
SNR settings. Channel coefficients are randomly generated, and
the E-step initialization is fixed. White QPSK input.

inherent ambiguity of the i-th estimate, associated with blind
channel estimation in general. The E-step and M-step equations
used in the simulations are zero-noise versions, (9) and (10),
because no noticeable performance degradation was observed
compared with the noise-included versions, (7) and (8).

Fig.1 shows channel estimation error in function of EM
iterations for white QPSK input. We see that EM converges
within a few iterations, especially in high SNR settings. Also
we see that the maximum NSE lies within a reasonable range
from the mean, which verifies successful estimation for every
randomly generated channel with a single E-step initialization
Wi in (15).

Fig.2 illustrates the mean of NSE versus SNR for white
QPSK input. From this figure we see that the estimates by EM-
based P-PCA approaches to those by the standard subspace
method.

Fig.3 demonstrates channel estimation error in function of
the number of EM iterations for various types of inputs, white
or colored, and QPSK or 16QAM modulated. We see that the
difference in modulation makes only slight difference, as we
predicted in Section 4.1. The FIR coefficients of (0.7071,
0.7071) were used as a coloring filter. Although the proposed
algorithm did converge, this colorness brought slower
convergence and increased error.

7. CONCLUSIONS

A new implementation of blind estimation of SIMO FIR
channels has been proposed. This EM-based implementation
yields the same channel estimates as the widely-known
subspace method, but is computationally more efficient. Unlike
typical EM applications, the proposed scheme is free from the
cumbersome parameter initialization issue. It is shown that the
proposed scheme is applicable to non-Gaussian, colored input
signals too.
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