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ABSTRACT

A unified framework to jointly solve the problems of localiza-

tion and synchronization at the same time is presented in this

paper. The joint approach is attractive because it can solve

both localization and synchronization using the same set of

message exchanges, which is extremely important for energy

saving in wireless sensor networks. The inaccuracy of anchor

locations and timings is taken into account to provide accu-

rate joint localization and synchronization. The anchor un-

certainties are assumed to be bounded, but knowledge of the

statistics of anchor uncertainties is not required. The prob-

lem is formulated into a linear model with uncertainties on

both sides of the equation. A robust joint estimator is then

proposed based on minimizing the worst-case mean square

error and the solution is obtained by solving a semidefinite

programming problem. Simulation results show that the pro-

posed estimator outperforms the traditional least squares esti-

mator at the cost of higher computational complexity.

Index Terms— Localization, time synchronization, an-

chor uncertainty, semidefinite programming

1. INTRODUCTION

Because of the wide applications of wireless sensor networks

(WSNs) in environmental monitoring, natural disaster predic-

tion, health care, manufacturing and transportation, WSNs

have attracted enormous interest in recent years. In WSNs,

localization is the basis of applications which require accu-

rate locations of sensor nodes, such as environment monitor-

ing, emergency rescue and geographic routing. On the other

hand, synchronization supports functions such as time-based

channel sharing, power scheduling, and time-based localiza-

tion [1].

While localization is traditionally studied from the signal

processing point of view [2], time synchronization is mainly

studied from protocol design of view [3]. As a result, these

two problems have been investigated separately for a long

time. However, localization and time synchronization have

very close relationships and share many aspects in common.

For time-based (i.e., time-of-arrival) localization algorithms,

time synchronization is even a prerequisite [2].

Based on the close relationships between localization and

time synchronization, it is natural to explore the possibility

of formulating them into a unified framework and solve the

two problems at the same time. The joint localization and

synchronization approach is extremely attractive in WSNs be-

cause the joint approach makes it possible to carry out local-

ization and time synchronization with only one set of data

package exchanges, rather than two. This is extremely crucial

for WSNs as the power and memory of the sensor nodes are

very limited.

Recently, some pioneering research works noticed the

similarities between the problem of localization and time syn-

chronization [4]. However, [4] only explores the possibility of

jointly implementing localization and time synchronization

at the protocol level. In [5], it was the first time that a unified

framework for joint localization and time synchronization

was proposed from signal processing perspective, assuming

accurate anchors.

In this paper, the results in [5] are extended to the case

where there are uncertainties in anchor locations and timings.

When a hierarchical method is used to localize and synchro-

nize a large sensor network, some newly localized and syn-

chronized sensors act as anchors to localize and synchronize

other nodes. These new anchors are subject to uncertainties in

their own locations and timings and the uncertainties need to

be taken into account for error propagation relief. Since accu-

rate statistics of the anchor uncertainties are usually unknown

to the node, no assumption about the distribution of the an-

chor uncertainties is made in our study. We only assume that

the anchor uncertainties are bounded.

2. SYSTEM MODEL

We consider a single node joint localization and time syn-

chronization in a WSN, where only one node needs to be

localized and synchronized to the anchors at a time. There

are L (L ≥ 3) anchors with known locations and timings.

The lth anchor Al is located at ao
l = [ao

xl, a
o
yl]

T with time
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skew θo
sl and time offset θo

0l. A node B with unknown loca-

tion x = [x, y]T , time skew θs and time offset θo uses the

time-stamps in two-way message exchanges with anchors to

estimate its location and timing parameters.

Assume there are M rounds of time-stamp exchanges be-

tween node B and anchor Al. As shown in Figure 1, the mth

message is sent from node B at time Tlm and is received by

Al at time Rlm. Then, anchor Al replies node B with an-

other message sent at time T̄lm and is received by node B at

time R̄lm. In the reply message from anchor Al to node B,

the time-stamps Rlm and T̄lm at the anchor side are also in-

cluded. Therefore, node B has all the time-stamp information

{Tlm, Rlm, T̄lm, R̄lm}. Note that Rlm and T̄lm are measured

with respect to the clock of anchors, while Tlm and R̄lm are

measured with respect to the clock of node B. The exchanged

time-stamps can be modeled as [6]

Tlm =
θs

θo
sl

Rlm − θs(tl + nlm) + θ0 − θs

θo
sl

θo
0l, (1)

R̄lm =
θs

θo
sl

T̄lm + θs(tl + n̄lm) + θ0 − θs

θo
sl

θo
0l, (2)

where tl = ‖x − ao
l ‖/c is the propagation delay between

node B and anchor Al, with c being the speed of light. Sym-

bols nlm and n̄lm are the time-of-arrival (TOA) detection er-

rors, which are independent and identically distributed (i.i.d.)

Gaussian random variables with zero mean and variance σ2
n

[6].

When there are uncertainties in the anchors, we can only

have the observed (but not true) values of the location, time

skew and time offset of anchors

al = ao
l − Δal, θsl = θo

sl − Δθsl, θ0l = θo
0l − Δθ0l, (3)

where Δal = [Δaxl, Δayl]T , Δθsl and Δθ0l are the error

in location, time skew and time offset of the lth anchor. To

make the discussion more general, we only assume the anchor

uncertainties are bounded, but make no assumption about the

distribution of the anchor uncertainties.

3. PROBLEM FORMULATION

Dividing both sides of (1) and (2) by θs, and rearranging the

equations, we have

−tl = −Rlm − θo
0l

θo
sl

+ Tlmθ1 − θ2 + nlm, (4)

−tl =
T̄lm − θo

0l

θo
sl

− R̄lmθ1 + θ2 + n̄lm, (5)

where θ1 � 1/θs and θ2 � θ0/θs have been introduced.

Squaring both sides of (4) and (5) and introducing

ξ = [θ2
1/2, (θ2

2 − ‖x‖/c2)/2, θ1θ2, θ1, θ2, xT ]T , (6)

the equations in (4) and (5) can be formulated into a linear

model as

Aoξ = bo − e, (7)

where Ao � [Ao
1,A

o
2, · · · ,Ao

L]T and bo � [bo
1, b

o
2, · · · , bo

L]T

with Ao
l and bo

l shown in (8) at the top of next page. The er-

ror vector in (7) is defined as e � [e11, ē11, · · · , eLM , ēLM ]T

with

elm ≈ 2(−Tlmθ1 + θ2 + (Rlm − θ0l)/θsl)nlm,

ēlm ≈ 2(R̄lmθ1 − θ2 − (T̄lm − θ0l)/θsl)n̄lm, (9)

where the approximation in (9) is due to the fact that θo
sl and

θo
0l are approximated by their observations θsl and θ0l, and

the second order terms of the anchor uncertainties and TOA

detection errors have been ignored in the operations that lead

to e.

Substituting ao
l = al + Δal, θo

sl = θsl + Δθsl, and

θo
0l = θ0l + Δθ0l into (7) and using the first-order Taylor

series approximation 1/(θsl +Δθsl) ≈ 1/θsl −Δθsl/θ2
sl, (7)

can be re-written as

(A + ΔA)ξ = b + Δb − e, (10)

where A and b are Ao and bo with ao, θo
sl and θo

0l replaced

by a, θsl and θ0l, respectively. Symbols ΔA and Δb repre-

sent the perturbations, which are unobservable, in A and b,

respectively, and are given by

ΔA = [
2
c2

[Δa1, · · · , ΔaL]T ⊗ 12M×1,02LM×5],

Δb =
2
c2

[aT
1 Δa1, · · · ,aT

LΔaL]T ⊗ 12M×1, (11)

where ⊗ is the Kronecker product.

4. ROBUST JOINT LOCALIZATION AND
SYNCHRONIZATION

In the lack of information about the uncertainties ΔA and

Δb, the traditional least squares (LS) method is usually used

to solve the problem in (10). However, if the uncertainties

are known to be bounded, further improvement on the per-

formance is possible by taking the bounds into account. In

this section, a robust minimax approach is presented to solve

(10) with the information that ΔA, covariance matrix CΔb =
E{ΔbΔbT } and ξ are bounded.

To solve the problem in (10) with bounded uncertainties,

the robust minimax approach seeks a linear estimator ξ̂ =
Hb, where matrix H is chosen to minimize the MSE:

MSE = E{‖ξ̂ − ξ‖2}
= E{‖Hb − ξ‖2}
= E{‖H((A + ΔA)ξ − (Δb − e)) − ξ‖2}
= ξT (I − H(A + ΔA))T (I − H(A + ΔA))ξ

+ Tr(HCHT ), (12)
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Ao
l = 2

⎡
⎢⎢⎢⎢⎢⎣

T 2
l1 1 −Tl1 −Tl1(Rl1 − θo

0l)/θo
sl (Rl1 − θo

0l)/θo
sl aoT

l /c2

R̄2
l1 1 −R̄l1 −R̄l1(T̄l1 − θo

0l)/θo
sl (T̄l1 − θo

0l)/θo
sl aoT

l /c2

...

T 2
lM 1 −TlM −TlM (RlM − θo

0l)/θo
sl (RlM − θo

0l)/θo
sl aoT

l /c2

R̄2
lM 1 −R̄lM −R̄lM (T̄lM − θo

0l)/θo
sl (T̄lM − θo

0l)/θo
sl aoT

l /c2

⎤
⎥⎥⎥⎥⎥⎦

T

, bo
l =

⎡
⎢⎢⎢⎢⎢⎣

‖ao
l ‖2/c2 − (Rl1 − θo

0l)
2/θo2

sl

‖ao
l ‖2/c2 − (T̄l1 − θo

0l)
2/θo2

sl
...

‖ao
l ‖2/c2 − (RlM − θo

0l)
2/θo2

sl

‖ao
l ‖2/c2 − (T̄lM − θo

0l)
2/θo2

sl

⎤
⎥⎥⎥⎥⎥⎦

T

(8)

where C � CΔb + E{eeT } is the covariance matrix of the

error on the right side of (10), and Tr(·) is the trace of a ma-

trix. In (12), in addition to the optimization variable H , the

values of ξ, C and ΔA are also unknown. Therefore, we

minimize the worst-case MSE across all possible values of ξ,

A and C:

min
H

max
‖ξ‖≤N,A∈UA,C∈UC

E{‖Hb − ξ‖2}

= min
H

max
‖ξ‖≤N,A∈UA,C∈UC

{ξT (I − HA)T (I − HA)ξ

+ Tr(HCHT )} (13)

where N is a positive constant. The uncertainty sets of A and

C are defined by

UA = {A + ΔA : ΔA ∈ R
2LM×7, ‖ΔA‖ ≤ ρA} (14)

UC = {Ce + CΔb : CΔb ∈ R
2LM×2LM ,

‖CΔb‖ ≤ ρC ,Ce + CΔb � 0} (15)

where ρA and ρC are nonnegative constants, Ce = 4σ2
nTT T

is the covariance of e with

T =

⎡
⎢⎢⎢⎢⎢⎣

−Tlmθ1 + θ2 + (Rlm − θ0l)/θsl

R̄lmθ1 − θ2 − (T̄lm − θ0l/θsl

...

−TLMθ1 + θ2 + (RLM − θ0l)/θsL

R̄LMθ1 − θ2 − (T̄LM − θ0L)/θsL

⎤
⎥⎥⎥⎥⎥⎦

. (16)

The minimax problem in (13) can be formulated into the fol-

lowing semidefinite programming (SDP) formulation [7]

min
τ,λ,t1,t2,Y ,H

{N2τ + t1 + ρCt2}
subject to⎡

⎣(τ − λ)I (I − HA)T 0
I − HA I −ρAH

0 −ρAHT λI

⎤
⎦ � 0

[
t1 hT

h I

]
� 0

[
Y HT

H I

]
� 0

[
t2 yT

y t2I

]
� 0 (17)

where y = vec(Y ) and h = vec(HC1/2
e ), with vec(·) the

vectorization operator and C1/2
e the Cholesky decomposition

of Ce. After H is found, the estimate of ξ can be obtained

by

ξ̂ = Hb. (18)

As can be seen from (6), the elements of ξ are in fact not

independent of each other and the estimate of ξ can be refined

by exploiting the relationship between elements of ξ, which

can be represented by

Gω = ξ, (19)

where ω = [θ1, θ2, xT ]T , and

G =
[
G̃
I4

]
, G̃ =

1
2

⎡
⎣θ1 0 0 0

0 θ2 − x
c2 − y

c2

θ2 θ1 0 0

⎤
⎦ . (20)

The refinement of the estimate of ξ is carried out by

ω̂ = (Ĝ
T
Ĝ)−1Ĝ

T
ξ̂, (21)

where Ĝ is obtained by putting the estimated values of x, y,

θ1 and θ2 from ξ̂ of (18) into the corresponding variables in

G. The final estimates of θs and θ0 are obtained from the

estimates θ̂1 and θ̂2 in (21) by θ̂s = 1/θ̂1 and θ̂0 = θ̂2/θ̂1.

5. SIMULATION RESULTS

In the simulations, there are three anchors located at (1, 2),
(10, 3), and (4, 11), with unit of meter. The sensor node to

be located and synchronized is located at (5, 6). The number

of time-stamp exchange round, clock skew and clock offset

are set to M = 2, θs = 1.005 and θ0 = 50ns, respectively.

The unit of all time-stamps in the two-way message exchange

is nanosecond. The uncertainties Δaxl and Δaxl are uni-

formly drawn from [−0.01, 0.01], while Δθsl and Δθ0l from

[−0.005, 0.005]. The ρA and ρC are calculated accordingly

from (11). Because the norm of ξ is unknown, N is estimated

from the LS solution N̂ = ‖ξ̂LS‖.

Figures 2 and 3 show the MSE of location estimation,

which is defined as E{(x − x̂)2 + (y − ŷ)2}, and MSE of

time skew and time offset estimation, respectively. It can be
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seen that the MSE performances of the proposed robust min-

imax estimator is better than the conventional LS estimator,

especially when the variance of TOA detection error σ2
n is

large. When the TOA detection error is small, LS and the

robust minmax provide similar performances.

6. CONCLUSIONS

In this paper, we proposed a unified framework to jointly

solve the localization and time synchronization problems with

bounded uncertainties in the anchor locations and timings.

The problem was formulated into a linear equation with errors

in the model matrix and a robust minimax estimator was pre-

sented. Simulations showed that the robust minimax estima-

tor performs better than conventional LS estimator, especially

when the variance of TOA detection error is large. However,

considering both performance and computational complexity,

the LS estimator might be preferable when the variance of

TOA detection error is small.
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Fig. 1. Two-way time-stamp exchange between node B and

the lth anchor Al.
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