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ABSTRACT

Wireless sensor networks are considered in which sensors

convey binary decisions over fading channels to a common

fusion center. The fusion center first takes each received sig-

nal and makes an estimate of the transmitted bit. The average

of the estimated bits is compared to a threshold to make a

global decision. Exponential error bounds are derived that

allow one to trade off signal-to-noise ratio versus the number

of sensors to achieve desired average error levels. An attrac-

tive feature of the bounds is that they do not require exact

knowledge of the wireless channel statistics; approximations

are sufficient.

Index Terms—Channel state information, distributed de-

tection, fusion center, ultra-wideband, wireless sensor net-

work.

1. INTRODUCTION

The parallel-architecture wireless sensor network shown in

Fig. 1 is to be used to make a decision about a binary hy-

pothesis. In this system, each sensor uses its measurement to

generate a binary message to be sent over its own channel to

the fusion center. We consider the case in which the fusion

rule is required not to depend on exact knowledge of the per-

formance of the individual sensors or on exact knowledge of

channel-state information (CSI). Our goal is to provide expo-

nentially decaying bounds on the average global false-alarm

probability and the average global miss probability, where the

average is over the CSI available to the decoders. Such aver-

aging appears, for example, in [4, eq. (4)]. There, such aver-

aging is regarded as infeasible for computation of the average

global error probability itself. Here, since we focus on bounds

rather than the error probability itself, we do not encounter

such difficulties.

∗The work of E. K. P. Chong was supported in part by NSF Grant ECCS–

0700559.

2. SYSTEM MODEL

Writing Vk := (Uk,Yk,Ck,Lk) for k = 1, . . . ,n, we assume

that the Vk are conditionally independent and identically dis-

tributed (conditionally i.i.d.) given either hypothesis. The

random variables Uk and Lk are binary-valued, while Yk and

Ck may be discrete or continuous random variables (or even

random processes), depending on the situation at hand. In

particular, Ck denotes the CSI of the kth channel, and is

available to the kth decoder, but not to the fusion rule it-

self. We further assume that for each k, Ck is independent of

(Uk,Yk,Lk) and that the distribution of Ck does not depend on

the hypothesis or on k.

Although each Uk is binary-valued, we do not require

or assume that it is the result of a local likelihood-ratio test

(LRT). Even so, we call Uk a local decision, and define the

local false-alarm and detection probabilities,

pF := P0(Uk = 1) and pD := P1(Uk = 1),

where P0 and P1 are probabilities computed under hypothesis

H0 and H1, respectively.

Conditioned on the CSI Ck of the kth channel, we put

αk := P0(Lk = 1|Ck) and βk := P1(Lk = 1|Ck).

If we group the sensor, channel, and decoder into a virtual
sensor and call Lk the kth virtual local decision, then αk can

be viewed as the virtual local false-alarm probability of the

kth virtual sensor. Similarly, βk can be viewed as the virtual

local detection probability of the kth virtual sensor.

3. THE FUSION RULE

Let C := [C1, . . . ,Cn]′. Conditioned on knowing C, and as-

suming the fusion-rule designer knows the distribution of Vk
under each hypothesis, the optimum fusion rule under the

Neyman–Pearson or Bayesian setups is given in terms of the

likelihood ratio of (L1, . . . ,Ln). Since the Lk are condition-

ally independent under each hypothesis, it is a straightforward

calculation, e.g., [1], to show that the required log likelihood
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Fig. 1. A parallel-architecture wireless sensor network for a binary detection problem.

ratio can be reduced to

n

∑
k=1

Lk ln
βk(1−αk)
αk(1−βk)

,

which is a linear combination of the Lk. As this requires

more information than is likely to be available [3], [11], [12],

we propose instead the average-of-virtual-local-decisions
statistic,

Xn :=
1

n

n

∑
k=1

Lk,

to be compared with a threshold η . Specifically, the fusion

rule declares H1 to be true of Xn > η , and H0 otherwise. No-

tice that the only way in which this fusion rule can depend on

sensor or channel distributions is in the choice of the thresh-

old. As we will see, the choice of suitable thresholds does

not require exact knowledge or calculation. In this sense, our

fusion rule is “all purpose.”

4. PERFORMANCE ANALYSIS

We now bound the global probabilities of false alarm and miss

conditioned on the CSI C. A simple Chernoff-bound argu-

ment shows that for s > 0,

P0(Xn > η |C) ≤ e−sη
n

∏
k=1

(1−αk +αkes/n)

and

P1(Xn ≤ η |C) ≤ esη
n

∏
k=1

(1−βk +βke−s/n).

Defining

α := E[αk] and β := E[βk],

and taking expectations of the two preceding inequalities, we

find that

E[P0(Xn > η |C)] ≤ exp[−sη +n ln(1−α +αes/n]

and

E[P1(Xn ≤ η |C)] ≤ exp[sη +n ln(1−β +βe−s/n)].

Minimizing the right-hand sides over s > 0 yields, assuming

α < η < β ,

E[P0(Xn > η |C)] ≤ e−nD(η‖α) (1)

and

E[P1(Xn ≤ η |C)] ≤ e−nD(η‖β ), (2)

where, for 0 < p < 1, the error exponent D(η‖p) is the

Kullback–Leibler informational divergence,

D(η‖p) := η ln
η
p

+(1−η) ln
1−η
1− p

.

Thus, (1) and (2) give exponentially decaying upper bounds

on the average global probabilities of false alarm and miss at

the fusion center output.

4.1. Discussion

The bounds in (1) and (2) depend on α and β , which we may

not know. However suppose we have an upper bound on α ,

say αmax, and a lower bound on β , say βmin, such that

α ≤ αmax < βmin ≤ β .

If we then choose αmax < η < βmin, we can loosen the bounds

in (1) and (2) to

E[P0(Xn > η |C)] ≤ e−nD(η‖αmax)

and

E[P1(Xn ≤ η |C)] ≤ e−nD(η‖βmin),

where we have used the easily-verified fact that as a function

of p, D(η‖p) is increasing for 0 < p < η and is decreasing

for η < p < 1.

In a Bayesian context with prior probabilities π0 and π1 of

H0 and H1, respectively, we have the expected global proba-

bility of error,

Pe := E
[
π0P0(Xn > η |C)+π1P1(Xn ≤ η |C)

]
≤ π0e−nD(η‖α) +π1e−nD(η‖β ).
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To make this go to zero as fast as possible as n → ∞, we

choose η to equalize the divergences. The required value of

η is easily found to be

η =
ln

1−α
1−β

ln
β
α

+ ln
1−α
1−β

.

If we only have bounds αmax and βmin, we can similarly equal-

ize the divergences in

Pe ≤ π0e−nD(η‖αmax) +π1e−nD(η‖βmin).

4.2. Analysis of α and β

Since α := E[αk], we begin by evaluating αk. It is helpful to

use the notation

α̂(c,u) := P0(Lk = 1|Ck = c,Uk = u),

where, for convenience, we take the binary values of Uk = u
to be u =±1. Using properties of conditional expectation and

conditional probability, we have

αk := P0(Lk = 1|Ck)
= E0[P0(Lk = 1|Ck,Uk)|Ck]
= E0[α̂(Ck,Uk)|Ck]
= α̂(Ck,1)pF + α̂(Ck,−1)(1− pF), (3)

where the last step uses the independence of Ck and Uk.

Similarly, since β := E[βk], with

β̂ (c,u) := P1(Lk = 1|Ck = c,Uk = u),

we have

βk := P1(Lk = 1|Ck)

= β̂ (Ck,1)pD + β̂ (Ck,−1)(1− pD). (4)

The formulas for α̂(c,u) and β̂ (c,u) depend only on the

channel and the decoder, while pF and pD depend only on

the measurement statistics and on how the sensor converts the

measurement into Uk. The formulas (3) and (4) show how the

channel and decoder are coupled with the sensor to compose

αk and βk.

5. EXAMPLE

Similar to [3], [11], we assume independent, flat-fading chan-

nels of the form

Yk = CkUk +Zk,

where the Zk are i.i.d. Gaussian with zero mean and vari-

ance σ2 under each hypothesis, and Uk = ±1. The kth de-

coder outputs Lk = 1 if Yk > 0 and Lk = 0 otherwise. To

carry out the program of the previous section, we compute

α̂(c,1) = 1−Q(c/σ) and α̂(c,−1) = Q(c/σ), where Q de-

notes the standard normal complementary cumulative distri-

bution function, Q(z) :=
∫ ∞

z e−t2/2/
√

2π dt. It follows from

(3) and (4) that

αk = [1−Q(Ck/σ)]pF +Q(Ck/σ)(1− pF)

and

βk = [1−Q(Ck/σ)]pD +Q(Ck/σ)(1− pD).

To compute α := E[αk] and β := E[βk], it suffices to compute

E[Q(Ck/σ)]. If Ck is a Rayleigh random variable with second

moment E[C2
k ] = ρ2, then we have from [13, eq. (3.61)] or [7,

p. 226] that

S := E[Q(Ck/σ)] =
1

2

[
1−

(
1+

2

ρ2/σ2

)−1/2]
.

It follows that

α = (1−S)pF +S(1− pF)

and

β = (1−S)pD +S(1− pD).

Note that

β −α = (pD − pF)(1−2S)

= (pD − pF)
(

1+
2

ρ2/σ2

)−1/2

, (5)

which is positive whenever pD > pF as would typically be the

case. Furthermore, β −α is the length of the interval in which

the admissible threshold η must lie as noted above (1); we

can now see how this length depends on the signal-to-noise

ratio (SNR) ρ2/σ2. At infinite SNR, β −α = pD− pF; as the

SNR decreases to zero, β −α shrinks to zero according to the

factor multiplying pD − pF in (5).

5.1. Extensions

Conceptually it is straightforward to carry out the foregoing

calculations for a multipath channel. In this case, α̂(c,±1)
and β̂ (c,±1) will involve quantities roughly of the form

Q
(√‖c‖2/σ2

)
, where c is now a vector. The challenge then

is to compute E
[
Q

(√‖c‖2/σ2
)]

. Even when the length

of the vector c is random, as in some ultra-wideband chan-

nel models [6], [10], such expectations can sometimes be

computed numerically, e.g., [8].

6. CONCLUSION

Our results allow one to trade off SNR versus number of sen-

sors to achieve a given average global false-alarm probabil-

ity, miss probability, and/or error probability. To achieve a
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longer network lifetime by lowering the SNR but still main-

tain desired probabilities, we can use our exponential bounds

to determine the number of sensors required.

Our results make no assumptions about the design of the

sensors. For example, design of optimal sensors that take into

account the channel has been considered in [2], [5], [9]. No-

tice also that our fusion rule depends on the sensors and the

channel only through bounds on the threshold η . Design of

fusion rules that take optimal account of the channel has been

considered in [3], [11].
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