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Abstract—The problem of distributed average consensus with
quantized data is considered in this paper. We firstly propose a
simple modification to the classical consensus protocol. Under a
condition that the quantization noise variance converges to zero,
the proposed protocol achieves a consensus in a mean squared
sense and the consensus value is equal to the average of the initial
state. Based on this result, we develop an adaptive quantization
scheme which can adaptively adjust its quantization threshold
and step-size by learning from previous runs, in a way such that
the quantization noise variance at each sensor decreases to zero.
Simulation results are presented to illustrate the effectiveness of
the proposed algorithm.

Index Terms – Distributed average consensus, quantized data,
wireless sensor network (WSN).

I. INTRODUCTION
Distributed average consensus has attracted much attention

over the past few years. It is a fundamental problem arising
from the wide range of applications in wireless sensor net-
works (WSNs), such as distributed function computation and
distributed parameter estimation. In contrast to a centralized
approach, a distributed average consensus scheme does not
need a fusion center. Instead, sensors exchange data with
their respective neighbors and carry out local computations
to eventually reach a consensus, which is usually the average
value of all sensor measurements. This characteristic makes
the distributed average consensus scheme suitable for WSN
applications where power and bandwidth are severely con-
strained.
A multitude of studies on distributed average consensus

have appeared recently. Among them, a major research di-
rection focuses on the computation of the optimal weights
[1], [2] or development of schemes [3], [4] to accelerate
the convergence rate of the distributed consensus algorithms.
In these work, they usually assume that the real data are
exchanged among neighboring sensors without distortion. This
assumption, however, is undermined in practice due to the
link noise and quantization errors. Unfortunately, it is shown
[5] that in the presence of noise, the classical consensus
protocol adopted in [1], [2] does not achieve a consensus
and the asymptotic mean squared error is unbounded. Many
recent efforts [6]–[10] have been made to address this issue.
Specifically, when only quantization errors are considered, the
authors [6] proposed two coding schemes by exploiting the

temporal correlation among successive states. A consensus
can be achieved under the condition that the quantization
noise variance converges to zero. In addition, [7] proposed
a dithered quantization scheme to reach a consensus, in which
a set of weights decaying to zero and satisfying a persistence
condition are used. Despite these efforts, we are still away
from our objective because these algorithms either cannot
reach a consensus [9], [10] or converge to a final consensus
value which is random and not the desired average of the initial
states [6], [7].
In this paper, we present a modified version of the classical

consensus algorithm. The proposed consensus protocol is
shown to converges in the mean squared sense to a desired
state under a condition that the quantization noise variance
decreases to zero. We propose an adaptive quantization (AQ)
scheme which can adaptively adjust its quantization threshold
and step-size by learning from previous states, in a way such
that the quantization noise variance at each sensor decreases
to zero.

II. CONSENSUS PROTOCOLS
We model the WSN as an undirected graph G = (V, E)

whose vertices V = {1, 2, . . . , N} correspond to the sensors
and whose edges E = {(i, j)|i, j ∈ V } represent available
communication links among sensors. An edge between i and
j exists if sensor i can communicate directly with sensor
j. We focus our study on the connected graph, i.e. there
exists a multihop communication path connecting every pair
of vertices. The structure of the graph can be described by an
N ×N symmetric affinity matrix A

ai,j =

{
1 if (i, j) ∈ E

0 otherwise
(1)

where ai,j denotes the (i, j)th entry of A. The Laplacian
matrix of the graph G is defined as

L � D−A (2)

where D � diag(A1) is the degree matrix and 1 denotes
a column vector with all unity elements. L is a positive
semidefinite matrix with only one null eigenvalue associated
with the eigenvector 1√

N
1 [11]. Assuming ideal links and
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no quantization, the classical distributed average consensus
algorithm [1] updates its state as

x(t + 1) = (I− αL)x(t) � Wx(t) (3)

where x(t) � [x1(t) x2(t) . . . xN (t)]T , xn(t) denotes the
state value of sensor n at iteration t. It can be easily verified
that for 0 < α < 2

λmax(L) , the above system converges
to the average of the initial state, i.e. 1

N
11

T
x(0), where

λmax(L) denotes the largest eigenvalue of L. However, when
quantization error1 is present, a direct application of the
consensus algorithm to the quantized data: x(t + 1) =
WQ(x(t)), results in an error propagation, where Q(x(t)) �

[Q(x1(t)) . . . Q(xN (t))]T , Q(xn(t)) denotes the quantized
data of xn(t) using certain quantization scheme. To see this,
we rewrite the above update equation as

x(t + 1) = W (x(t) + v(t)) (4)

where v(t) � [v1(t) v2(t) . . . vN (t)]T , vn(t) = Q(xn(t))−
xn(t) denotes the quantization error of sensor n introduced at
iteration t. The state x(t) therefore can be expressed as

x(t) = W
t
x(0) +

t−1∑
i=0

W
t−i

v(i). (5)

Noting that Wt → 1
N

11
T as t →∞ [1], we have

lim
t→∞

x(t) = lim
t→∞

(
W

t
x(0) +

k∑
i=0

W
t−i

v(i)

+
t−1∑

i=k+1

W
t−i

v(i)

)

=
1

N
11

T
x(0) +

k∑
i=0

1

N
11

T
v(i)

+ lim
t→∞

t−1∑
i=k+1

W
t−i

v(i) (6)

where k can be any finite positive integer. From (6), we
see that the quantization errors incurred at each iteration are
preserved throughout the process and eventually contributes
to the final state. As a result, the system usually does not
converge to the desired initial average, even if a consensus
can be achieved; in more severe cases, error accumulation may
lead to an unbounded state divergent from the average of the
initial state [5].
In [6], [7], the authors considered another consensus pro-

tocol in which each sensor, say sensor n, uses its local
unquantized data, xn(t), instead of the quantized version,
Q(xn(t)), in updating its state, which leads to:

x(t + 1) = (I− αD)x(t) + αAQ(x(t))

= Wx(t) + αAv(t). (7)

1We only consider quantization error in this paper and assume the quantized
data are exchanged without error.

Since 1
N

11
T
A = 1

N
11

T
D �= 0, by following a similar

derivation, it can be readily shown that (7), as (4), also
suffers from error propagation. This is the main reason that
the algorithms [6], [7], although reaching a consensus under
certain conditions, fail to converge to the average of the initial
state.
To address this issue, we propose the following consensus

protocol

x(t + 1) = x(t)− αLQ(x(t))

= Wx(t)− αLv(t) (8)

where for each sensor, both the real data xn(t) and its quan-
tized version Q(xn(t)) are used in the update. This protocol,
albeit simple, can suppress the error propagation to a certain
extent. We have

lim
t→∞

x(t) = lim
t→∞

(
W

t
x(0)− α

t−1∑
i=0

W
t−1−i

Lv(i)

)

=
1

N
11

T
x(0)− α

k∑
i=0

1

N
11

T
Lv(i)

− lim
t→∞

α
t−1∑

i=k+1

W
t−1−i

Lv(i)

(a)
=

1

N
11

T
x(0)− lim

t→∞
α

t−1∑
i=k+1

W
t−1−i

Lv(i) (9)

where (a) comes by noting that 1
T
L = 0. We observe

that for a specific i, the quantization error component v(i)
introduced at iteration i will eventually vanish as the system
evolves over time. This observation implies that a convergence
to the desired state may be achieved if the sequence {v(t)}
satisfies a certain condition. Specifically, as [6], we model the
quantization errors as spatially and temporally uncorrelated
random variables2. We then have the following important
result.
Proposition 1: Suppose that the quantization errors {vn(t)}

have zero mean and their variance converge to zero, i.e.
E[v2

n(t)] → 0 as t → ∞ ∀n, then the above iteration (8)
achieves a consensus in a mean-squared sense. The consensus
value is equal to the average of the initial state, i.e. 1

N
11

T
x(0).

Proof: See Appendix A.
This result inspires us to propose an adaptive quantization

(AQ) scheme which can adaptively adjust its quantization
threshold and step-size by learning from previous states, in
a way such that the quantization noise variance at each sensor
decreases to zero.

III. PROPOSED ADAPTIVE QUANTIZATION SCHEME

In this section, we will first introduce the one-bit AQ scheme
and then extend it to the case of multiple bits.

2In [12], Sripad et al. proved that the quantization noise can be modeled as
a uniformly distributed random variable uncorrelated with the input message
under a certain mild condition.
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A. One-bit AQ

The AQ scheme involves encoding and decoding process.
The received quantized (encoded) data has to be decoded
before it is applied to the recursive update. Hence the quan-
tized data Q(xn(t)) we discussed in the consensus protocols
correspond to the data decoded at the receiver, but not the
encoded data at the transmitter.
Let us consider encoding first. For each sensor, say sensor

n, it, firstly, uses two globally specified parameters: an initial
threshold τ , and an initial quantization step-size Δ, to generate
its one-bit encoded data (encoded data are also quantized data,
we refer to them as encoded data in order to differentiate
them from the quantized data we mentioned in the consensus
protocols) of the first three iterations:

bn(0) =sgn(xn(0)− τ)

bn(1) =sgn(xn(1)− τn(1))

bn(2) =sgn(xn(2)− τn(2)) (10)

where {
sgn{x} = −1, if x ≤ 0,

sgn{x} = 1, if x > 0.

τn(1) = τ + bn(0)Δ and τn(2) = τn(1) + bn(1)Δ, bn(t)
denotes the encoded data of sensor n at iteration t, τn(t) is the
corresponding threshold used for quantization. At iteration t ≥
2, sensor n computes its threshold by performing accumulation
of the previous bits, weighted by a variable step-size Δn(t):

τn(t + 1) = τn(t) + bn(t)Δn(t), (11)

where Δn(t) evolves using the following dynamic model:

Δn(t) = Δn(t− 1)Kbn(t−1)bn(t−2) t = 2, 3, . . . , (12)

where K > 1 is a constant, and Δn(1) = Δ. Then sensor n
uses τn(t) as a threshold to generate its current encoded data:

bn(t) = sgn(xn(t)− τn(t)) (13)

The decoding of the AQ scheme is simple and described as
follows. Suppose sensorm is one of the neighboring sensors of
sensor n. After receiving the encoded data bn(t) from sensor n,
sensor m recovers τn(t+1) and uses it as the decoded output
data for the recursive update, i.e. Q(xn(t)) = τn(t + 1). The
reconstruction of τn(t + 1) can be inferred from the received
encoded data {bn(i)}t

i=0, i.e. τn(1) = τ + bn(0)Δ, τn(2) =
τn(1) + bn(1)Δ and (11) for t ≥ 2.
We can immediately recognize that the above process is

reminiscent of the Delta modulation (DM) with variable step-
size (VS), but is implemented in a distributed fashion to solve
a consensus problem. As shown in [13], the VS-DM is able
to adaptively adjust its step-size and encode a waveform with
decreasing granular noise, which is exactly the property we
desired. An example of VS-DM encoding is illustrated in Fig.
1. We see that the threshold, i.e. the quantized data, gets closer
and closer to its true value as time evolves.

0 2 4 6 8 10
0

2

4

6

8

10

12

t

x(t)
Q(x(t))

Fig. 1. An example of VS-DM encoding.

The AQ scheme can be easily implemented in a distributed
fashion since it only involves very simple algebraic calcula-
tions. Also, unlike [6], no knowledge of the global topology is
required at each sensor. On the other hand, for both encoding
and decoding, not only current data but also information from
prior runs are required. Hence, for each sensor, a moderate
amount of memory resource has to be allocated to store the
prior information for encoding and decoding. Note that each
sensor needs to encode its own data and, at the same time, to
decode the data received from its neighboring sensors.

B. Multiple-bit AQ
The extension of one-bit AQ to multiple bits is straightfor-

ward. At the encoding side, we replace the one-bit encoder:
bn(t) = sgn(xn(t) − τn(t)) with a multiple-bit encoder.
Let mn(t) denote the multiple-bit encoded data with bit
length q. Using the current interval length, i.e. quantization
step size Δn(t), we construct a set of data points: S =
{±2k−1Δn(t)}q

k=1. The encoded data mn(t) is obtained by
rounding the message yn(t) � xn(t)−τn(t) to its nearest data
point in S, i.e.

mn(t) =
si

Δn(t)

where si ∈ S and |si − yn(t)| = min
j
{|sj − yn(t)|} (14)

The threshold τn(t + 1) is updated as

τn(t + 1) = τn(t) + mn(t)Δn(t) (15)

where, as before, the quantization step size is set to be Δ
for t = 0, 1 and evolves using the same dynamic model (12)
when t ≥ 2, with bn(t) denoting the sign of the encoded data
mn(t), i.e. bn(t) = sgn(mn(t)).
The decoding procedure is the same as that of the one-bit

AQ. At each sensor, say sensor m, it reconstructs Q(xn(t)) =
τn(t+1) using the encoded information {mn(i)}t

i=0 received
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Fig. 2. MSE vs. the number of iterations, with the number of quantization
bits q equal to 1, 3, 5, respectively.

from sensor n for the recursive update. We have τn(1) =
τ + mn(0)Δ, τn(2) = τ + mn(1)Δ, and (15) for t ≥ 2.

IV. SIMULATION RESULTS

We present simulation results to illustrate the performance
of our proposed AQ scheme. The sensor network is constructed
using a random geographic graph model, in which N = 25
sensors are placed uniformly at random on a two-dimensional
unit area and communicate with their neighbors within a radius
r. The transmission radius r is set to be

√
log N/N to ensure

that the graph is connected with a high probability. The initial
values of the sensors, {xi(0)}, are generated according to a
Gaussian distribution with zero mean and unit variance. The
performance is measured by an empirical mean-square error
‖x(t) − 1

N
11

T
x(0)‖22, which is averaged over 1000 Monte

Carlo runs, with the graph3 and the initial state independently
generated for each run. Fig. 2 shows the mean-square errors
(MSEs) of our proposed algorithm as a function of the
number of iterations Nitr, where we set K = 1.2 in (12) for
quantization step size update, and the number of quantization
bits, q, varies from 1 to 5. From Fig. 2, we see that, even
with a small number of quantization bits, the proposed AQ
scheme achieves a superior estimation performance within a
moderate number of iterations. This shows the effectiveness of
our proposed AQ scheme in solving the distributed consensus
problem.

APPENDIX A
PROOF OF PROPOSITION 1

Our objective is to show that

E[(x(t)− x̄0)
T (x(t)− x̄0)] → 0 as t →∞. (16)

3Only connected graphs are counted in.

where x̄0 � 1
N

11
T
x(0) and

x(t) =W
t
x(0)− α

t−1∑
i=0

W
t−1−i

Lv(i)

�f1 − f2 (17)

Since f1 is deterministic and f2 is a matrix-weighted com-
bination of the zero-mean random vectors {v(i)}, we can
decompose the mean-square error as

E[(x(t)− x̄0)
T (x(t)− x̄0)] = (f1 − x̄0)

T
(f1 − x̄0) + E

[
f
T
2 f2

]
�ε1 + ε2. (18)

Due to the manuscript length limit, we will not carry out a
detailed analysis for computing ε1 and ε2. It turns out that we
have the mean-square deviation upper-bounded by

E[(x(t)− x̄0)
T (x(t)− x̄0)]

<ρ2t‖x(0)‖22 + α2N

t−1∑
i=0

λmax(Cv,i)λ
2
max(L)ρ2(t−1−i) (19)

where ρ denotes the spectral radius of (W − 1
N

11
T ) and

we can readily verify that ρ < 1; λmax(L) and λmax(Cv,i)
denote the largest eigenvalue of L and Cv,i, respectively. It
can be shown that both terms on the right-hand side of (19)
will vanish as t → ∞ and the quantization noise variance at
each sensor converges to zero, i.e. there exists t0 such that for
any arbitrary small ε > 0, λmax(Cv,t) < ε holds for t > t0.
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