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ABSTRACT

In this paper, the issue of network topology control in wire-

less networks using a fully distributed algorithm is consid-

ered. Whereas the proposed distributed algorithm is designed

applying game theory concepts to design a non-cooperative

game, network connectivity is guaranteed based on asymp-

totic results of network connectivity. Simulations show that

for a relatively low node density, the probability that the pro-

posed algorithm leads to a connected network is close to one.

Index Terms— Wireless Sensor Networks, Distributed

algorithms, Game theory.

1. INTRODUCTION

Wireless sensor networks (WSNs) have received much atten-

tion in recent years as a technology useful to estimate physi-

cal parameters of a given area in order to, for instance, mon-

itor processes or detect and prevent environmental disasters.

Some WSN applications, e.g. forest fires, may require a large

amount of nodes. The feasibility of these networks thus relies

on the development of cheap nodes with low energy consump-

tion and limited processing capabilities. In these networks,

the use of distributed processes based on the exchange of lo-

cal information among the nodes only is of great interest.

One important issue in WSN is the topology control prob-

lem since it plays a fundamental role in the behavior of the

network. A connected network (or group of nodes if the net-

work is organized in clusters) is usually required in order to

ensure the delivery of packets to a fusion center in a central-

ized WSN, or in order to reach a consensus in the estimation

or detection of events in decentralized WSNs. Since connec-

tivity may vary with time due to malfunctioning nodes or node

mobility, the network should be able to dynamically adjust the

topology, preferably, in a self-organized way. Several topol-

ogy control algorithms can be found in the literature [1], they

are either centralized algorithms that require global network

information or distributed algorithms with a constraint on the

This work has been partially funded by the European Commis-

sion (033914-WINSOC), the Spanish Ministry of Education and Science

and FEDER funds (TEC2006-06481 and CONSOLIDER CSD2008-00010

COMONSENS) and the Catalan Government (2005SGR-00639).

minimum number of neighbors each node should have to en-

sure certain topology properties.

In this paper we address the problem of network topol-

ogy control and propose a distributed algorithm to adjust

the transmission power of each node formulated as a non-

cooperative game where nodes exchange information only

with their neighbors. Game theory is a collection of models

and analytic tools useful to study interactive decision pro-

cesses [2, 3]. Therefore, it provides a framework to solve in a

distributive fashion the problem of adjusting the transmission

power of the nodes in a WSN guaranteeing connectivity and

with an energy-efficient solution. In [1] the authors present

examples of topology control games and a distributed algo-

rithm that guarantees convergence to a connected network.

However, this algorithm requires global information flowing

through the network to check at each iteration the connec-

tivity or not of the network. Our contribution relaxes this

assumption and proposes a fully distributed algorithm based

on local information only.

The paper is organized as follows. In Section 2 we in-

troduce some general concepts of game theory. In Section 3

we present the game proposed to adjust the node transmission

power and a procedure to locally estimate the connectivity of

the network. Section 4 shows the simulation results and Sec-

tion 5 concludes the paper.

2. GAME THEORY BASICS

We limit our discussion to non-cooperative models that ad-

dress the interaction among individual rational decision mak-

ers. Such models are called games and the rational decision

makers are referred to as players.

A strategic non-cooperative game Γ(Ω, A, u) has three

main components:

• Ω is the players set, s.t. Ω = 1, . . . , N with N the

number of players in the game.

• A is the set of strategies and a = [a1, . . . , aN ]T ∈ A =
×N

i=1Ai. ai ∈ Ai represents the strategy of the i-th
player over the set of its possible strategies. Similarly,

a−i ∈ A−i = ×N
j �=iAj represents the strategies of the

rest of N − 1 players.
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• ui : A → R
N is the utility function of the i-th player.

The utility function (or payoff) quantifies the prefer-

ences of each user to a given strategy. Then, u =
[u1, . . . , uN ]T is the vector of all N utility functions.

Then, a non-cooperative game is an iterative procedure

where, at each iteration, players chose the strategy that max-

imizes their utility function. The Nash equilibrium (NE) is a

stable solution of the game in which no player may improve

its utility function by unilaterally deviating from it.

Definition 2.1 (Nash Equilibrium) An strategy profile a∗ is
a Nash equilibrium if, ∀i ∈ Ω and ∀ai ∈ A,

ui(a∗) ≥ ui(ai,a∗
−i) (1)

In general, games may have a large number of NE or may

not have any. Thus, it is of interest to design the utility func-

tion in a way such that the game has at least one equilibrium

point. It is proved in [4] that when the utility functions used

by the players are concave, the existence and uniqueness of

a NE is proved. However, the utility function may be de-

signed according to a criteria which could eventually yield to

non-convex functions. In those cases, there is another way

for deriving sufficient conditions for existence and unique-

ness of the NE in a game based on the so-called potential
games, [5]. This type of games is given when the incentive

of all players to change their strategy can be expressed by a

global utility function V . We refer to an exact potential game
(EPG) when the game admits an exact potential function, i.e.,

a player-independent real valued function that measures the

marginal payoff when any player deviates unilaterally (see

[5] for details). An ordinal potential game (OPG) is another

type of potential games which require having an ordinal po-

tential function that has the same directional behavior as the

individual payoff function, when that individual unilaterally

deviates. More rigorous definitions follow.

Definition 2.2 (EPG) A strategic game Γ(Ω, A, u) is an ex-
act potential game if there exist an exact potential function
V : A → R s.t. ∀i ∈ Ω,∀a−i ∈ A−i and ∀ai, bi ∈ Ai

V (ai,a−i) − V (bi,a−i) = ui(ai,a−i) − ui(bi,a−i) (2)

Definition 2.3 (OPG) A strategic game Γ(Ω, A, u) is an or-
dinal potential game if there exist an ordinal potential func-
tion V : A → R s.t. ∀i ∈ Ω,∀a−i ∈ A−i and ∀ai, bi ∈ Ai

V (ai,a−i)−V (bi,a−i) > 0 ⇔ ui(ai,a−i)−ui(bi,a−i) > 0
(3)

As stated in the following Lemma (see [5] for the proof),

the game defined by the utility function V presents the same

NE points as the original game whenever it is an OPG game.

Lemma 2.4 also holds for an EPG game since it is a particular

case of an OPG game.

Lemma 2.4 Let Γ(Ω, A, u) be an OPG and V the corre-
sponding ordinal potential function. If a ∈ A maximizes V ,
then it is a NE.

3. GAME THEORETICAL APPROACH TO
DISTRIBUTED POWER AND TOPOLOGY

CONTROL

The aim of this section is to develop a fully distributed al-

gorithm to adjust the transmission power of each node in

a WSN so that the network becomes connected with an

energy-efficient solution. The algorithm is formulated as a

non-cooperative game where nodes exchange information

only with their neighbors.

3.1. A Game Theoretical Algorithm

For the problem at hand, the players are the nodes and the

game is that of finding a NE such that each node is trans-

mitting at a minimal power while maintaining the network

connected. Thus, the set of strategies that the i-th node can

chose are the set of its possible discrete power levels Pi. Con-

sequently, we can define the instantaneous vector of power

levels as p = [p1, . . . , pN ]T ∈ P = ×N
i=1Pi as the vector

containing the power of each node. We also assume that, at

the beginning of the game, the nodes transmit with their max-

imum power level to gather neighbors information and the

network is connected.

In order to achieve the NE in the strategic non-cooperative

game Γ(Ω, P, u), nodes iteratively decide its power transmis-

sion by maximizing its utility function,

p̂i = arg max
pi∈Pi

{ui(pi, p̂−i)} (4)

After each iteration, a node power level change affects the

overall topology of the network which is taken into account

by the other nodes when optimizing their utility function.

As mentioned in Section 2, the iterative best response al-

gorithm in (4) yields to a NE or not depending on the design

of the utility function. Therefore, we aim at designing a util-

ity function with a NE that preserves connectivity but with a

more energy efficient solution than the initial topology with

all nodes transmitting at maximum power. Following the re-

sult in [1], the utility function of Proposition 3.1 is considered.

Proposition 3.1 The game Γ(Ω, P, u) where the individual
utilities are given by

ui(pi,p−i) =
{

pi,max − pi if network is connected
−pi otherwise

(5)

is an EPG and the exact potential function is

V (pi,p−i) =

⎧⎨
⎩

pi,max − ∑
i∈Ω

pi if network is connected

−∑
i∈Ω

pi otherwise.

(6)

Proof: We prove it by applying the concept of EPG in

Definition 2.2. Consider qi, pi ∈ P s.t. qi < pi, then we have
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that

Δui = ui(pi,p−i) − ui(qi,p−i) = qi − pi (7)

whether the network is connected or not. Similarly, we con-

struct the potential variational as

ΔV = V (pi,p−i) − V (qi,p−i) (8)

= −
⎛
⎝pi +

∑
j∈Ω;j �=i

pj

⎞
⎠ +

⎛
⎝qi +

∑
j∈Ω;j �=i

pj

⎞
⎠

Thus, Δui ≡ ΔV ⇒ V is an exact potential function and the

game Γ(Ω, P, u) is an EPG.

�

The designed game falls in the category of EPG games

and, as stated in Lemma 2.4, finding the NE point of (5) is

equivalent to maximize the potential function in (6). If we

examine (5) and (6), we may see that the value of pi that

maximizes both the utility function and V is the minimum

transmission power for what the network is connected, if any.

For the sake of clarity, a pseudocode of the procedure is

shown in Algorithm 1. That is the sequence of iterations that

a node i executes before deciding its own power level, pi.

Notice that each node runs the best response algorithm in (4)

Niter times in parallel and not necessarily synchronized. It

is important to remark that we assume each node knows the

transmission power level used by its neighbors. This informa-

tion can be easily included in the packets exchanged between

nodes if there is a discrete set of power levels.

At the light of the proposed utility function, the main con-

cern is to determine whether the network is connected or not.

This point was not addressed in [1] which was mentioned as

future work. However, this point is challenging if one aims at

designing a fully distributed algorithm that uses local infor-

mation only. In Section 3.2 the issue of determining network

connectivity with only local information is addressed.

3.2. Distributed Connectivity decision

In order to check the connectivity of a network we have to

resort to graph theory principles. This theory describes the

communication flow among the nodes of a network by an

undirected graph G = (V , E ) where V = {1, · · · , N} is

the set of vertices (nodes) and E is the set of edges (links) [6].

The edge eij represents a bidirectional communication link

between a pair of distinct nodes i and j. The set of neighbors

of node i is defined as Ni = {j ∈ V : eij ∈ E } for all

i, j = {1, · · · , N}, and represents the set of indexes of the

nodes sending information to node i. A path in a graph G is

a sequence of alternating nodes and edges that starts and ends

at different nodes, such that each edge is incident to its pre-

decessor and successor node. The graph is connected if there

exists a path between any two nodes, and the connectivity (or

Algorithm 1 Game Theoretic algorithm at node i.

Require: Pi = {pi,1, . . . , pi,max}
Ensure: pi

Initialization:

1: Ni,p = dim{Pi}
2: pi = pi,max � Pi(Ni,p)
3: Collect neighbors information: p−i ∈ Ni

∣∣
pi,max

Algorithm iterations:

4: for k = 1 to Niter do
5: for m = 1 to Ni,p do
6: pi = Pi(m) and Ni ← Ni

∣∣
pi

7: Check Network connectivity as in Algorithm 2 ⇒ γi

8: if γi == 1 then
9: Compute ui(pi,p−i) = pi,max − pi

10: else
11: Compute ui(pi,p−i) = −pi

12: end if
13: ui(m) = ui(pi,p−i)
14: end for
15: p̂i = arg max

pi∈Pi

{ui(m)}
16: end for

topology) of the graph is described by the N × N Laplacian

matrix L, with entries

[L]ij =

⎧⎨
⎩

d
(out)
i i = j
−1 i 
= j & eij ∈ E

0 otherwise
(9)

where d
(out)
i stands for the outdegree of node i, and corre-

sponds in our case to Ni. If the set λ1 ≤ λ2 ≤ · · · ≤ λN

denote the eigenvalues of L, by definition we have λ1 = 0. If

the graph is connected, from spectral graph theory results we

have that the algebraic multiplicity of λ1 is equal to one and

L is an irreducible matrix [7].

Therefore, global information of the network is needed

to check its connectivity since the computation of the second

smallest eigenvalue of the Laplacian is required. However, we

are interested in a procedure to check connectivity but based

on local information only. In [8] the authors have obtained

a lower bound on the communication radius r(n) in order to

ensure connectivity with a high probability. Specifically, it is

shown that if n nodes are placed in a disc of unit area in R
2

and each node transmits at a power level so as to cover an area

of πr2(n) = (log(n)+ c(n))/n, then the resulting network is

asymptotically connected with probability one if and only if

c(n) → +∞. A common choice for c(n) is c(n) = K log(n)
with K > 0. The radius r∗ computed as

r∗ =

√
log(n)

n
(10)

can be used as an asymptotical threshold so that if r(n) de-

creases faster than r∗, then the probability that the network is
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connected tends to zero as n increases. Conversely, if r(n)
decreases slower than r∗, then the probability that the net-

work is connected tends to one. The methodology proposed

to check connectivity is detailed in Algorithm 2. For each

power level, pi, the node estimates the node density as the

relation between the number of neighbors transmitting with

a power less or equal to pi and the coverage area. Then, the

threshold r̂∗i is estimated with this node density. The decision

on the connectivity is taken comparing the actual coverage ra-

dio ri with the threshold. Since this procedure is based on an

asymptotic threshold function, its performance will improve

as the node density increases.

Algorithm 2 Local Check of Network connectivity.

Require: pi,Ni

Ensure: γi

1: Obtain ri from pi

2: Estimate node density: n̂ = dim{Ni}
πr2

i

3: Evaluate threshold: r̂∗i =
√

log n̂
n̂

4: if ri > r̂∗i then
5: γi = 1 ⇐ network connected

6: else
7: γi = 0 ⇐ network not connected

8: end if

4. SIMULATION RESULTS

The proposed algorithm has been simulated and validated by

computer simulation. The WSN is generated by randomly

placing nodes in a 10 × 10 meters square. We consider the

same set of discrete power levels for each node. Since the

decision on network topology is based on asymptotical as-

sumptions, i.e. when n → ∞, the algorithm has been tested

in order to evaluate its validity. Figure 1 shows the probabil-

ity of having a connected graph after running the algorithm

versus node density deployed in the field area. Results show

that it is required a minimum density of nodes to guarantee a

certain probability of obtaining a connected network.

5. CONCLUSIONS

This paper studies the problem of power and topology control

in a distributed WSN using game theory tools. The novelty of

the work is that network connectivity is achieved with a fully

distributed algorithm based on a non-cooperative game as the

node density increases. The proposed algorithm is based on

a non-cooperative game and asymptotic results for network

connectivity. The algorithm is validated through computer

simulation results, were the asymptotic behavior as the num-

ber of nodes increase becomes apparent.
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Fig. 1. Probability of having a connected graph as a function

of node density.
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