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ABSTRACT

We consider the estimation of the locations of multiple trans-

mitters based on received signal strength measurements at

a network of randomly-placed receivers. We generalize the

expectation-maximization (EM) method to create a quasi EM

algorithm for localization under lognormal shadowing. Sim-

ulated performance is compared to a state-of-the-art global

optimizer and to random guessing. Results reveal that the

proposed quasi EM algorithm outperforms both alternatives

in median and ninety-fifth percentile error, especially as the

number of receivers increases.

Index Terms— transmitter localization, expectation-

maximization, spectrum sensing, cognitive radio

1. BACKGROUND AND MOTIVATION

We consider the problem of using power measurements by

multiple receivers to estimate the locations of multiple trans-

mitters under lognormal shadowing, and propose a quasi

expectation-maximization (EM) algorithm. Natural appli-

cations of this solution are those in which localization of

a non-cooperative entity is required. For example, uncoor-
dinated cognitive radio systems identify pockets of unused

spectrum available for transmission, often called spectral

holes, without cooperation from any legacy systems oper-

ating in the region. Recent work has argued that spectral

hole identification can be significantly improved over simple

detection-based approaches that allow a cognitive radio node

to communicate only if the power it observes falls below

a threshold [1, 2]. Estimating the locations of the legacy-

system transmitters holds promise for increasing the degree

to which cognitive radio nodes can exploit unused spectrum

without causing harmful interference to legacy systems.

Transmitter localization for uncoordinated cognitive ra-

dio systems is more challenging than the standard problem
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of localization in wireless sensor networks, since it must

be performed without any cooperation from or communi-

cation with the transmitters. When only one transmitter is

present, its location can be determined from three received

power measurements via trilateration or from a larger number

via a least-squares estimate. However, when there are mul-

tiple transmitters contributing unknown proportions of the

observed power at each receiver, the non-cooperative local-

ization problem does not admit a straightforward solution.

In related work, Mark and Nasif have studied the trans-

mitter localization problem and estimated the maximum

interference-free transmit power when a single legacy trans-

mitter is present [3]. Dogandzic and Amran [4] have derived

an EM solution to the single transmitter localization prob-

lem under fading and shadowing, but even in that case the

solution is highly complex, requiring multivariate numerical

integration. In this paper, we focus on estimating the loca-

tions of multiple transmitters, and extend our previous work

on doing so under additive white Gaussian noise (AWGN)

[2, 5] to a more realistic lognormal shadowing model, which

has been empirically validated as a model for the variations

in received power due to obstacles in the signal path, which

generally dominate the effects of additive noise [6]. As the

joint distribution of the hidden and observed random vari-

ables in the lognormal model does not produce an analytic

EM algorithm, we develop a quasi EM approach to multiple

transmitter localization under lognormal shadowing.

2. SYSTEM MODEL

Let the unknown two-dimensional locations of the M trans-

mitters be denoted by θ = [θ1 θ2 . . . θM ]T ∈ R
M×2,

where θi is the location of the ith transmitter. We assume that

M is known and that all transmitters have the same constant

transmit power P0. We assume that the locations of the N
receivers, N ≥ 2M , are known but arbitrary. The problem is

then to determine the maximum likelihood (ML) estimate θ̂ of

θ based on the observed power measurements at the receivers:

ideally, θ̂ = arg maxθ p(r|θ), where r = [r1 r2 . . . rN ]T
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and rj ∈ R
+ is the observed power at the jth receiver.

Let dj(θi) ∈ R
+ denote the Euclidean distance from the

transmitter located at θi to the jth receiver. Consider a log-

distance path loss model such that the noise-free received

power at the jth receiver from the ith transmitter is given by

Sij = ρP0

(
d0

dj(θi)

)n

, (1)

where ρ is a constant that reflects the carrier frequency and

antenna properties, n represents the path loss exponent, and

d0 is the close-in reference distance.

We assume that lognormal shadowing occurs indepen-

dently for each transmitter-receiver pair. The resulting un-

known measured power from the ith transmitter to the jth

receiver is modeled as the random variable

Hij = Sij10
Xij
10 ,

where Xij ∼ N (0, σ2) is the gain in dB due to shadowing.

The unknown measurements Hij are related to rj , the ob-

served power at the jth receiver, by

rj =
M∑
i=1

Hij . (2)

Finally, let the set of all M × N unknown measured powers

be H = [H1 H2 . . . HM ], where Hi = [Hi1 Hi2 . . . HiN ].

3. ITERATIVE LOCALIZATION TECHNIQUE FOR
LOGNORMAL SHADOWING

Under independent lognormal shadowing, the likelihood

function of H conditioned on transmitter locations θ is the

product of MN lognormal densities:

p(H = h|θ) =
M∏
i=1

N∏
j=1

10 log10 e

hijσ
√

2π
e−

(10 log10(hij)−10 log10(Sij))2

2σ2 .

From (2), the observed power rj is the sum of M lognormal

random variables. No analytic distribution exists for the sum

of lognormal random variables, and hence no closed-form ex-

pression for E[H|r, θ̂] can be obtained, which complicates the

expectation step of the EM algorithm.

We have designed a quasi EM approach, which avoids

the conditional likelihood computation required by the true

EM approach, and notably does not require any knowledge

or estimation of the shadowing variance. The algorithm al-

ternates between (a) estimating each transmitter location in-

dependently based on an allocated percentage of the power

received at each receiver; and (b) allocating a percentage of

the power received at each receiver to each transmitter pro-

portional to the expected received power given the last trans-

mitter location estimates. This approach is not limited to log-

normal shadowing; in fact, it can be applied to any stochastic

model.

Step 1: Randomly generate initial estimates θ̂ of the M trans-

mitter locations.

Step 2: Given M estimated transmitter locations θ̂, determine

the expected log-power (in dB) at the jth receiver

from the ith transmitter for i = 1 to M and j = 1
to N :

eij = E[10 log10 Hij ] = E
[
10 log10

(
Sij10

Xij
10

)]

= 10 log10(ρP0) + 10n log10

(
d0

dj(θ̂i)

)
.

Step 3: Normalize the expected log-power values eij so that

they give a total power at each receiver equal to the

observed power at that receiver:

ẽij = 10 log10

(
rj10

eij
10∑

i 10
eij
10

)
.

Note that this normalization is proportional, rather

than the additive normalization prescribed by the EM

algorithm for AWGN [5]. We chose to use propor-

tional normalization based on preliminary results and

to avoid situations where an additive correction re-

sults in a negative power.

Step 4: Using the expected log-power values ẽij , re-estimate

the transmitter locations by minimizing the sum of

squared dB error:

θ̂i = arg min
θ̃i

N∑
j=1

(
ẽij − 10 log10

(
ρP0d

n
0

dj(θ̃i)n

))2

.

Note that minimizing the sum of squared dB power

error is intuitively pleasing under lognormal shadow-

ing, since the power at receiver j due to transmitter

i is a Gaussian random variable in the log domain,

and hence squared error is inversely proportional to

likelihood.

Step 5: If the stopping criterion is not yet met, return to Step

2.

In our simulations, we stop after a fixed number of

iterations, but other convergence measures are of

course possible.

To increase the likelihood that the global minimum of the

cost function is reached, the quasi EM algorithm is run to

convergence multiple times with different sets of random ini-

tial conditions. The final estimate of the transmitter locations

is chosen to be the solution that yields the lowest sum-of-

squared log-power errors:

C(θ̂) =
N∑

j=1

⎛
⎝log10

⎛
⎝ rj∑M

i=1

(
ρP0dn

0

dj(θ̂i)n

)
⎞
⎠

⎞
⎠

2

. (3)
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4. EXPERIMENTS

We compare the performance of the proposed quasi EM tech-

nique to constriction particle swarm optimization (CPSO)

and to random guessing. CPSO is a variant of particle swarm

optimization that introduces a constriction factor that reduces

the velocity of the particles as the search iterates, thereby

increasing the likelihood that the particle will converge to a

minimal location [7]. The CPSO particles search the (M×2)-
dimensional θ-space to directly minimize the sum-of-squared

log-power errors cost function, given by (3), that we use to

compare results from different initial conditions for the quasi

EM algorithm. We use the choices for the inertial weight α,

cognitive scaling parameter β, and social scaling parameter γ
recommended by Schutte and Groenwold [7].

In our implementation of CPSO, each particle’s initial ve-

locity is drawn from a uniform distribution on the interval

[−0.5, 0.5] times the width of the search area, while its ini-

tial location is chosen using the following “smart” technique,

which is repeated for each particle. First, the k-means algo-

rithm is run with random initial centroids to group the N re-

ceivers into M clusters based on geographic proximity. Then,

we assume that all of the power observed at the receivers in a

given cluster is generated by a single transmitter, and find the

least-squares estimate of that transmitter’s location. The re-

sulting set of M transmitter locations constitutes the “smart”

initial location for the particle in the CPSO search space. A

more detailed description of smart initial conditions can be

found in [2].

4.1. Experimental Setup

The region of interest is assumed to be a one-kilometer

square, with certain constraints on the transmitter and receiver

geometries. First, transmitters are assumed to be separated by

at least 200 meters, reflecting the physical reality that primary

transmitters using the same frequency band would interfere

if they were too close together. Second, all receivers are

assumed to be at least twice the reference distance d0 from

all transmitters, a constraint required to guarantee that the

log-distance propagation model yields realistic results [6].

These placement constraints are reflected in the imple-

mentation of the proposed quasi EM algorithm. While the

algorithm is iterating, if any transmitter location estimates are

within 100 meters of each other, or if any single estimate is

more than 50% (500 meters) outside the square region of in-

terest, the algorithm is assumed to be converging incorrectly

and the problematic transmitter(s) are uniformly randomly re-

assigned to new locations in the square region. (The proxim-

ity threshold is 100 meters instead of 200 meters so that trans-

mitter location estimates can temporarily move slightly closer

as the algorithm converges.) Once the algorithm stops iterat-

ing, any location estimates that lie outside the square region

are clipped to its nearest boundary. In contrast, the locations

of the CPSO particles are clipped in order to keep them within

the search area at all times.

The quasi EM algorithm is run M2 times with different

uniformly randomly drawn initial estimates θ̂, with the num-

ber of iterations (for each initial estimate) fixed at 10. For

consistency, CPSO uses M2 particles, generated via the pre-

viously described “smart” technique, and is allowed 10 iter-

ations per particle for a total of 10M2 guesses. Similarly,

the random guessing approach makes 10M2 random guesses

(uniformly drawn from the search space) of the transmitter

locations and chooses the random guess that minimizes the

sum-of-squared log-power error cost function given in (3).

4.2. Results

The simulated performance of the quasi EM, CPSO, and ran-

dom guessing algorithms is presented in Figs. 1 and 2. The

chosen performance metric is the average squared distance er-

ror between estimated and true transmitter locations, where

the average is taken over the transmitters whose locations

are estimated. The values have been normalized to assume

a square of unit area. Performance figures show both the

median and 95th percentile error over 1000 different random

draws of M = 3 transmitters and N = 6 to N = 40 re-

ceivers with shadowing variance of σ2 = 4 and σ2 = 16. The

median error reflects each algorithm’s typical performance,

while the 95th percentile error gives insight into the severity

of erroneous estimates for each algorithm.

The quasi EM localization approach produces the small-

est median error across all values of N and σ2 considered,

outperforming both CPSO and random guessing. This perfor-

mance gap increases as N increases from its minimum value,

especially for larger shadowing variance. Median error begins

to flatten near N = 20 for σ2 = 4 but continues to drop as

N increases to 40 when σ2 = 16. As the number of receivers

grows large, additional power measurements are less likely

to provide independent information, and hence the resulting

performance improvements are not as significant. When the

shadowing variance is large, however, a large number of mea-

surements are necessary to overcome the severe shadowing

effects. When only a small number of receivers is available,

each receiver can take measurements at multiple locations.

Quasi EM’s avoidance of severely erroneous estimates rela-

tive to competing schemes, especially for sufficiently large

N , is particularly noteworthy.

5. CONCLUSIONS AND OPEN QUESTIONS

We have shown that a quasi EM approach can be effective in

estimating multiple transmitter locations from multiple power

measurements when propagating signals experience lognor-

mal shadowing. Compared to a state-of-the-art global opti-

mization method and to random guessing, the proposed quasi

EM algorithm produces roughly one-half to one-tenth the er-
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Fig. 1. Median normalized average squared distance error for

σ2 = 4 (top) and σ2 = 16 (bottom).

ror when given the same number of guesses. The practical

complexity of these estimation methods depends on the im-

plementation architecture, but even random guessing requires

evaluating a cost function to select a best random guess. Thus

we argue that these three estimation methods are comparable

on a per-guess basis, though quasi EM does require a more

complex procedure to form each guess.

Future work should explore how the sum-of-log-power-

errors cost function (3) that one can minimize in practice re-

lates to the final cost function, the sum of distances between

the estimated and true transmitters. Additionally, we assumed

that the number of transmitters and their transmit powers are

known; how to extend the estimation algorithms to model

these quantities as random variables is an open question.
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