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ABSTRACT

Active Queue Management (AQM) methods attempt to predict
and control network router queue levels and provide feedback re-
garding network congestion to data sources through packet mark-
ing/dropping. AQM methods have not employed statistical signal
processing principles largely due to the requirement of low com-
plexity. In this paper, we apply optimal ltering and target tracking
methods to the design of AQM. In particular, we develop Kalman
Filter based AQM which results in router queues with reduced queue
level variance. To account for networks with more bursty traf c, we
use Interacting Multiple Models (IMM) which similarly result in re-
duced queue variance in simulations with both long-term and bursty
short-term traf c. In comparisons with other AQM methods, these
low complexity target tracking-based AQM methods give a more
constant queue length without any loss in source throughput.

Index Terms— Networking, active queue management, Kalman
Filter

1. INTRODUCTION

In high speed networks such as the Internet, network congestion oc-
curs when data transmitting sources sharing a router overwhelm the
router with too many packets to process. This causes the queue level
and queueing delay at the router to increase and ultimately a router
may drop packets from its buffer if the sources sharing the buffer do
not reduce their sending bit-rates. To provide sources with feedback
regarding network congestion, Active Queue Management (AQM)
methods are commonly employed. An AQM scheme in a router at-
tempts to control the queue level, and detect and control congestion.
Upon detection of congestion, the AQM scheme can warn sources
by randomly marking packets. If the congestion continues, the AQM
scheme actually drops packets, usually in some random manner.

The Random Early Detection (RED) algorithm [1] was the rst
AQM method. Building upon this early work, many variants of RED
have been proposed [2, 3, 4, 5]. In RED, the dropping probability is
based on an average queue size which is calculated as a weighted
average of the current and past queue values (see section 2). Based
on this calculated probability, future packets arriving at the router
are queued or dropped. As pointed out in [4], one of the drawbacks
of RED is its inability to react to bursty traf c which is typical in
networks with a large number of active TCP sources. This may be
addressed by an algorithm which seeks to react quickly based on a
shorter time window and is able to predict the future queue value.

A natural question is whether statistical signal processing meth-
ods can be applied to the key prediction and control problems of
AQM. In [6], the NLMS algorithm [7] from adaptive ltering was
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used in the APACE AQM method. In particular, NLMS was used to
adapt the weights on previous measurements of the queue length in
order to predict the queue value at a future time. Simulation results
in [6] showed that the APACE method was better able to control the
instantaneous queue than RED [1], SRED [2] and AVQ [8].

In some respects, the prediction and control of a queue level can
be viewed as a target tracking problem. Motivated by the success
of optimal ltering and estimation principles such as the Kalman
Filter and the Interacting Multiple Models (IMM) method in target
tracking, we explore the application of these principles to AQM in
networks. In particular, we rst propose a novel AQM algorithm
which uses the Kalman Filter to estimate both the next value of a
queue and the rate of change of the queue size. Estimates of these
two quantities are incorporated into a new dropping function which
is updated at uniform sample times. This method, which we term
KF-AQM, is low complexity and predicts the future queue value ac-
curately when the traf c is not overly bursty. To account for very
bursty network traf c, we expand our approach to use the IMM tar-
get tracking method, which allows us to use other process models
to account for greater variations in the buffer size. This approach
is termed KF/IMM-AQM and to keep the complexity of the method
reasonably low (a requirement for AQM), we limited the number of
models to two in our experiments.

Through simulations using long and short duration TCP Reno
connections, our proposed methods are shown to give a very sta-
ble queue value (i.e., reduced queueing delay variance) at the router,
with improvements over both RED and APACE. From an applica-
tions viewpoint, a reduced queueing delay variance leads to better
applications performance (e.g., better jitter buffer design and per-
formance in streaming video). Moreover, the performance indicates
that the KF/IMM-AQM methods produces better queue dynamics
without any loss in source throughput. Consequently, this paper
shows the potential for the utilization of optimal ltering and target
tracking principles in network AQM.

2. RANDOM EARLY DETECTION (RED)

On each packet arrival at the router, the new average queue length
qnew

ave is updated using the current queue length q and the old value
of the average queue length qold

ave as

q > 0 : qnew
ave = (1− wq)q

old
ave + wqq

q = 0 : qnew
ave = (1− wq)

mqold
ave (1)

The parameter wq determines the weight given to the new queue
measurement and when the queue is empty the average queue value
drops off exponentially with the parameter m derived from the idle
time between packet arrivals. Using the value qnew

ave packets are
marked (by setting a bit in the header of the packet) or dropped from
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the queue. Since the effect on the sender is the same, we will just
consider these as dropped packets in our description. The dropping
probability pRED

drop is calculated based on minimum and maximum
queue thresholds mq and Mq respectively which are usually set as
some percentage of the maximum buffer capacity:

qnew
ave < mq : pd = 0 ; qnew

ave > Mq : pd = 1

mq ≤ qnew
ave ≤ Mq : maxp .

qnew
ave −mq

Mq −mq
(2)

The parameter maxp determines how aggressively packets are
dropped as the queue builds. The parameter settings mq, Mq , wq

and maxp were tuned through simulation and are documented in
the original RED paper [1].

3. APPLICATION OF TARGET TRACKING TO AQM

It has been well established through a number of studies that net-
work traf c has the property of self-similarity and long-range de-
pendence [10]. However, for small buffers and over the short time
scales where we wish to predict future queue values, this charac-
teristic will have no impact on our model [11]. As demonstrated
through network measurements in [12], some network ows’ packet
arrivals (e.g., FTP) cannot be adequately modeled using the Pois-
son distribution as the burstiness of the data transfer is not captured.
While one can use sophisticated traf c models in AQM algorithms,
the fact is that one must design low-complexity algorithms suitable
for real-time implementation in hardware. Consequently, to capture
the burstiness in network traf c, we propose to model the variability
using Gaussian statistics with different variances. In particular, by
utilizing multiple models (e.g., IMM) from target tracking, one can
obtain low complexity AQM algorithms that capture network traf c
variability. To start, we rst consider a simple Kalman Filter model
for predicting future queue arrivals.

3.1. KF-AQM

We consider a uniform sampling of the queue length at the router and
denote the queue length at time kT by qk where T is the sampling
period. We frame the problem in AQM as that of determining the
future queue length based on the current queue length, past queue
lengths and some rate of change in the queue length. The problem
posed is very similar to that faced in tracking a moving target which
has an unknown velocity and the Kalman Filter has been very suc-
cessfully applied to this problem [13]. In common with many papers,
we assume that any acceleration is taken into account by the noise
samples in the model equations. Denoting the rate of change in the
queue length at time kT by vk , we model the evolution of the queue
length as:

qk = qk−1 + vk−1.T + δk−1

vk = vk−1 + εk−1 (3)

Taking the state vector at time kT as xk = [qk vk]T , we can rewrite
(3) in the form

xk = Axk−1 + εk−1 where A =

[
1 T
0 1

]
(4)

and εk−1 = [δk−1 εk−1]
T is a Gaussian noise with distribution

N (0, Vk−1).

The queue length zk is the number of complete packets in the
buffer at time kT and the measurement model is given as

zk = qk + ek. (5)

The deviation of the measurement zk from the true qk is due to the
fact that packets are arriving and departing from the queue at any
given time point and so a measurement in packets does not capture
the partial packets which should be subtracted or added to give the
true length of the queue. The error is assumed to be Gaussian and
distributed as ek ∼ N (0, Rk). Expressing (5) in terms of the state
vector xk, zk = Hxk + ek where H = [1 0].

Assuming the prior distribution of the state vector is x0 ∼
N (m0, P0) where m0 is the mean and P0 is the covariance, the
Kalman Filter can be summarized using a prediction step which
gives the values m−

k and P−
k and an update step which gives the

next mean and covariance estimates mk and Pk [7, 13]:
Prediction:

m−
k = Amk−1 ; P−

k = APk−1A
T + Vk−1 (6)

Update:

uk = zk −Hm−
k

Kk = P−
k HT S−1

k where Sk = (HP−
k HT + Rk) (7)

mk = m−
k + Kkuk ; Pk = P−

k −KkSkKT
k

When a new measurement of the queue length qk is made,
(6) is used to obtain m−

k+1 which gives a prediction of the future
queue length q−k+1 and rate of change in the queue length v−

k+1.
We incorporate both components of the next state into a new drop-
ping/marking probability. Given a buffer size, B, and a target
fractional occupancy of the queue α, we calculate this probability as

αB < q−k+1 < B : pKF
drop =

q−k+1 − αB

B − αB
+ γvv−

k+1 (8)

where γv is a weighting parameter which must be chosen. If q−k+1 <

αB, pKF
drop = 0 and if q−k+1 ≥ B, pKF

drop = 1. This sets the dropping
probability for any packets which arrive between the current queue
measurement and the next queue measurement.

In practice, we consider both noise variances Vk and Rk to be
time-invariant; Vk is diagonal with equal variances denoted by η and
Rk = ρ. The setting of these parameters will be discussed in the
simulation section.

3.2. KF/IMM-AQM

While a single model of the queue dynamics can adequately capture
the behavior of the queue under a variety of traf c conditions, the
bursty nature of network traf c means that the behavior of the queue
will at times diverge from one particular model. Drawing from the
Kalman Filter literature, we can effectively deal with these sudden
changes by using a number of different models for the queue dynam-
ics and associating measurements with the best matching model. The
Interacting Multiple Model (IMM) Kalman Filter [13] combines the
estimates from different tracking models at the start of each estima-
tion cycle and a transition probability matrix, T , is used to determine
the interaction. A single cycle of the IMM can be best described as
three different stages: interaction, ltering, and combination [14].

We denote each model by M j , j = 1, · · · , N and the prior
probability of each model at the kth time step by μi

k, i = 1, · · · , N .
The different models are described by

xk = Aj
k−1xk−1 + δj

k−1 ; zk = Hj
kxk + ej

k, j = 1, · · · , N (9)
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Interaction: The mixing probabilities are rst calculated as

cj =
N∑

i=1

Tijμ
i
k−1 ; μ

i|j
k =

1

cj
Tijμ

i
k−1. (10)

Using these probabilities, the initial mixed input means and covari-
ances for each lter are obtained as:

m0j
k−1 =

N∑
i=1

μ
i|j
k mi

k−1 (11)

P 0j
k−1 =

N∑
i=1

μ
i|j
k {P i

k−1 + (mi
k−1 −m0j

k−1)(m
i
k−1 −m0j

k−1)
T }
(12)

Filtering: For each model, the means and covariances calculated
in the interaction step along with the system equations in (9) are
put through a Kalman Filter detailed in (6) and (7) to give the new
means and covariances for each model at the kth step: mi

k, P i
k, i =

1, · · · , N . For each model, the likelihood of the measurement for
each lter is computed as

Λi
k = N (ui

k; 0, Si
k) (13)

where ui
k is the measurement residual and Si

k is the covariance ma-
trix obtained from the Kalman Filter update (see (7)). The new
model probabilities are obtained as

μi
k =

Λi
kci∑N

i=1 Λi
kci

(14)

where ci is obtained from (10).
Combination: Finally, the updated mean and covariance is computed
by combining the estimates from the different models:

mk =
N∑

i=1

μi
kmi

k (15)

Pk =

N∑
i=1

μi
k{P i

k + (mi
k −mk)(mi

k −mk)T } (16)

4. SIMULATIONS

As a common testbed for AQM algorithms [1, 5, 6] we consider a
network with a dumbbell topology where each source node at one
side of a bottleneck link is paired with a sink node at the other side
of the bottleneck link. The bottleneck link has a capacity of 1Mbps
while the other links in the network have a capacity of 3Mbps so
that this simulation is identical to the APACE simulation in [6]. The
propagation delay on each of the links is set to 1ms which means that
the packet delay is mainly due to queueing delay. The buffer size at
the bottleneck node is set to 50 packets. All packets are sent over
TCP Reno connections and the size of all packets in the network is
set to 552 bytes. The performances of the KF-AQM and KF/IMM-
AQM methods are compared to both the RED [1] and APACE [6]
methods using simulations in ns-2 [9]. APACE was run with a lter
length of M = 10 and lookahead of P = 6 and the fractional occu-
pancy of the buffer was set to 0.3 for both APACE and KF-AQM.

In KF-AQM, the sampling frequency was varied over the range
100-200Hz and the difference in performance was found to be min-
imal so the sampling frequency was set to 100Hz. The weight pa-
rameter γv in pKF

drop from (8) was also varied and a value of 0.05 was
found to give the best performance across multiple simulations. The
measurement noise variance ρ was set to 0.5 while the process noise
variance was set to η = 1.0.
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Fig. 1. Comparison of the router instantaneous queue length in pack-
ets (y-axis) over 0-30 seconds (x-axis) with 40 nodes transmitting
over FTP using (a) RED, (b) NLMS, and (c) KF-AQM.

Nodes KF-AQM APACE RED
μ σ μ σ μ σ

10 13.97 1.75 14.31 2.30 15.44 3.15
15 15.92 1.81 16.08 2.23 16.53 4.63
20 16.94 1.83 17.23 2.25 17.18 4.33
25 17.17 1.91 17.76 2.51 17.61 3.51
30 18.53 1.77 17.95 2.65 18.01 4.53
35 19.12 1.83 18.67 2.74 18.25 5.79
40 19.15 1.80 19.02 2.65 18.53 4.84
45 19.95 1.83 20.06 3.06 19.01 4.56
50 19.90 1.82 20.69 3.15 18.82 6.52

Table 1. Mean (μ) and standard deviation (σ) of queue length for
each of the AQM methods KF-AQM, APACE, and RED as the num-
ber of FTP connections is increased.

4.1. Long-lived TCP Flows

In this experiment, each of the nodes in the network constantly
streams packets over FTP which corresponds to long le transfers
from each source to destination node through the bottleneck link.
As the number of nodes increases, the congestion at the bottleneck
router increases leading to increased packet drops. The number of
transmitting nodes was increased from 10 to 50 in steps of 5 and the
effect on the bottleneck queue was examined.

To illustrate the difference in the instantaneous queue when us-
ing RED, APACE, and KF-AQM, the queue evolution with 40 nodes
transmitting is shown in gure 1. At the very start of the simulation,
it is seen that RED is unable to control the queue and quickly reaches
the buffer limit. The APACE algorithm improves on the RED per-
formance but the KF-AQM method is even more effective in rapidly
bringing the queue length to a stable level. As the packet arrivals
from the different ows uctuate, the queue size using RED shows
large oscillations while APACE is more successful in limiting the
queue variance. KF-AQM further reduces the queue variance main-
taining a more constant queue length at the router.

Similar behavior was observed with different numbers of trans-
mitting nodes and table 1 gives the mean and standard deviation of
the queue length over the time range 5-25 seconds (which avoids the
changes in the queue size at the start and end of the simulation). For
all methods, the mean queue size increases slowly as the number of
FTP sources increases. However, the standard deviation illustrates
that KF-AQM is much more effective than APACE or RED in keep-
ing the queue size close to a constant value as the number of sources
increases. Indeed the deviation from the mean queue size for KF-
AQM is less than 2 packets in each case. In table 2, the number of
drops is summarized for each method and this shows that the supe-
rior performance of KF-AQM is not at the expense of an increased
drop rate over RED or APACE indicating that a high throughput is
maintained. Even though the total number of packets dropped is sim-
ilar in all cases, the times at which packets are dropped are different
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Nodes RED NLMS KF-AQM
10 734 772 749
15 1076 1129 1015
20 1295 1341 1330
25 1492 1606 1465
30 1596 1617 1664
35 1720 1705 1746
40 1784 1888 1867
45 2020 1975 1999
50 1973 2148 2111

Table 2. Marked/dropped packets recorded for each of the AQM
methods KF-AQM, APACE, and RED as the number of FTP con-
nections is increased.

Method μ σ Drops
RED 19.95 6.87 4415

APACE 22.87 3.95 2817
KF/IMM-AQM 22.92 3.52 2754

Table 3. Mean (μ) and standard deviation (σ) of queue length and
drops for each of the AQM methods RED, APACE, KF/IMM-AQM
with short and long TCP ows.

leading to the observed differences in queue lengths at the router.
The better performance of KF-AQM can be attributed to its ability
to reliably predict the future queue length and base its drop decisions
on this prediction.

4.2. Long-lived and Short-lived TCP Flows

The other form of TCP transfer prevalent in the internet is short-
lived ows resulting from short HTTP requests and responses. The
number of long-lived ows will also be time-varying. In this exper-
iment, we simulate one such scenario where we start with 10 long-
lived TCP ows and at 10 seconds 20 more long-lived TCP ows are
added to the router traf c over a period of 0.5 seconds. In addition
to this, 6 nodes generate short TCP transfers which pass through the
bottleneck link to the destination nodes. The sizes of the short TCP
transfers are governed by a Pareto distribution with mean size 10KB
and a shape parameter of 1.5. The sessions arrive from the source
nodes according to a Poisson distribution with a mean arrival rate
of λ = 100 sessions/second. The behaviors of the router queue us-
ing RED, APACE and KF/IMM-AQM were compared. In this case,
we found that the bursty nature of the traf c was modeled better by
using an IMM with two models. The parameter settings were kept
the same as the rst simulation for APACE and RED. For KF/IMM-
AQM, A and H were kept the same in each model (see section 3.1)
but the process noise variances were set to η1 = 1.0 to account for
small changes in the queue and η2 = 25.0 to capture the behavior of
the queue when sudden bursts of traf c arrived at the router.

The instantaneous queues for each method are shown in gure
2. It is readily apparent that the KF/IMM-AQM method absorbs
the new ows that arrive at 10 seconds much better than either the
APACE or RED methods. In table 3, the mean and standard devia-
tion of the queue length along with the packet drops for each AQM
methods are summarized. The RED algorithm fails to work with this
mix of traf c types as seen from the queue oscillations and number
of packet drops. The APACE method controls the queue size much
better than RED and the packet drops were signi cantly reduced.
The new KF/IMM-AQM method performs best of all as seen from
the reduced variance in queue length in gure 2(c) compared to 2(a)
and 2(b) and also con rmed by the values in table 3.
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Fig. 2. Comparison of the router instantaneous queue length in pack-
ets (y-axis) over 0-30 seconds (x-axis) with long and short TCP
transfers using (a) RED, (b) NLMS, and (c) KF/IMM-AQM.

5. CONCLUSIONS
We have applied optimal ltering principles drawn from statistical
signal processing to the problem of network congestion control and
queue management in network routers. We introduced Kalman Fil-
ter based AQM (KF-AQM) and extended this to Interacting Multiple
Model AQM (KF/IMM-AQM) to account for increased burstiness at
the router under certain network traf c conditions. The complexity
of these AQM methods is reasonably low and simulations showed
that these methods succeeded in keeping the queue length close to a
target fractional buffer occupancy level. Simulations further revealed
that our methods result in reduced queue variance in comparison to
other AQM methods such as RED and APACE which is a very de-
sirable characteristic from an applications viewpoint. Future work
will examine the complexity performance trade-off associated with
increased numbers of models in KF/IMM-AQM.
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