
PULSE COUPLED OSCILLATORS’ PRIMITIVE
FOR LOW COMPLEXITY SCHEDULING

Y.-W. Peter Hong1, Anna Scaglione2, and Roberto Pagliari3

1 Institute of Communications Engineering, National Tsing Hua University, Taiwan
2 Department of Electrical and Computer Engineering, UC Davis, USA

3 Department of Electrical and Computer Engineering, Cornell University, USA

ABSTRACT

Pulse coupled oscillators (PCOs) are pulsing devices that pulse in-
dividually in a periodic manner but alter their pulsing patterns in
response to the pulsing of other nodes. A network of PCOs can
produce a number of different dynamics from their pulsing activi-
ties, among which the synchrony of pulsing is perhaps the most well
known. In this paper, we study the primitive that falls into the class
of “desynchronization”. Specifically, we propose a simple pulse-
coupling mechanism that allows each node in the network to con-
verge to a desynchronized state where the nodes will pulse period-
ically with a constant spacing among each others firing times. We
discuss the convergence of the PCO mechanism and propose to ap-
ply this primitive to resolve contention in the reservation phase of a
reservation-based MAC protocol.

Index Terms— pulse-coupled oscillators, medium access

control, synchronization, scheduling.

1. INTRODUCTION

Pulse coupled oscillators (PCOs) are pulsing elements that

pulse individually in a periodic manner and alter their pulsing

patterns in response to the pulsing heard from other elements

(hence the adjective “coupled”). The pulse emission is often

referred as a firing event. In particular, the recipient of a pulse

(or coupling) moves earlier or later its own firing by altering

a local state that regulates the pulse emission of the node. It

is well known that networks of PCOs can produce a variety of

pulsing patterns, among which the synchrony of pulsing is the

most well-known [1]. These patterns are often used to model

the dynamics of spiking neurons in the brain [2].

The use of the PCO model as a powerful primitive for

wireless networks’ synchronization has been proposed by the

authors in [3]. In this paper, we utilize the PCO network’s

ability to generate a variety of pulsing patterns to solve one

of the most difficult tasks in wireless networks – multiplex-

ing of communication resources. We ask: “Can the PCO
dynamic be changed so as to have a fixed point where the
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nodes fire the desired multiplexing schedule?” Solutions to

this question were first investigated in [4], where the authors

found that it was possible to enforce in a decentralized fash-

ion a fair Time Division Multiple Access (TDMA) sched-

ule which would assign to each node 1/n-th of the frame

duration, where n denotes the number of nodes in a fully

connected network. Specifically, pulse-coupling mechanisms

were designed such that the nodes will converge to a desyn-

chronized state where they pulse periodically with a constant

spacing of 1/n among each others’ firings. The authors in

[4] proposed two PCO protocols to achieve the fair TDMA

schedule: 1) Desync, where the nodes’ state-update depends

only on the neighboring firing events; and 2) Inverse-MS,

which is essentially the same PCO technique proposed for

synchrony in [3], except with a negative coupling.

Here we propose an alternative method to the simplest of

the two strategies, the Inverse-MS which, as discussed in [4],

can only achieve weak convergence. Our first contribution

in this paper is to incorporate in the dynamics of each node

a parameter which can be adapted to capture the number of

nodes in the network. This method allows for a stable conver-

gence (i.e. strong convergence) to the desired schedule when

the parameter matches or is greater than the number of active

nodes. Secondly, we describe how this pulsing mechanism

can be used to perform contention in the reservation phase of

a reservation-based MAC protocol.

2. A PCO PRIMITIVE FOR DESYNCRHONIZATION

Consider a network of n sensors that are fully-connected via

direct transmission links. When in isolation, each sensor

pulses periodically with period T , which we refer to as the

firing cycle. However, in an interconnected network, the puls-

ing serves as the basis of interaction among sensors and, with

properly designed local coupling rules, allows the network to

attain desirable emergent properties.

We assume that, similar to CSMA, the sensors are able to

sense the transmission of their peers and react to the event by

adjusting their local pulsing times. Unlike CSMA, however,

the procedure has memory which is stored into the state vari-
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able of the PCO clock. This is done as follows. Each sensor,

say sensor i, has a PCO clock corresponding to the variable

φi(t), which represents the position of the PCO clock in [0, 1)
at the absolute time t. We refer to these as the nodes’ state

variables φi(t), i = 1, . . . , n, where 0 ≤ φi(t) < 1. In the

absence of coupling, the state variable of each node, say node

si, evolves as

φi(t) = (Φi + t/T ) mod 1.

where Φi ∈ (0, 1) is an initial random value. That is, a node

with phase φi(t) indicates that it is scheduled to fire after time

T − φi(t)T . When the phase reaches 1, the node fires and

resets its phase to 0. The firing will cause an instantaneous

coupling to all other nodes in the network. Let tp be the p-th

firing event time. In describing the protocol we assume that

the pulse is sensed perfectly and instantaneously by all nodes.

However, in practice, channel noise, finite pulse durations,

and propagation delays may affect detection of the pulse or

the correct coupling time, which will be described briefly in

Section 2.1. Without loss of generality let us assume that the

initial phases Φi are in descending order, so that node 1 is the

first firing and the rest of the nodes follows in increasing order

of the indexes.

Suppose that a firing occurs at time tp and that φi(tp) and

φi(t+p ) are the phases of a receiving node i at time tp before

and after a coupling is imposed. Every time a node fires, node

i will update its phase as

φi(t+p )=
{

f−1 (f (φi(tp)) + ε) , 0 ≤ φi(tp) < 1
n0

;

φi(tp), else.
(1)

or

φi(t+p )=
{

1−f−1(f (1−φi(tp))) + ε) , 1− 1
n0

<φi(tp)≤1
φi(tp), else.

(2)

where n0 ≥ 2 is a parameter that controls the spacing be-

tween nodes and f(x) is a function that is convex and mono-

tonically grows from 0 to ∞ in [0, 1/n0] (see Fig.1). ε ∈
(0,∞) is the coupling strength. Specifically, the speed of

convergence increases with ε.

The update rule in (1) is such that, when node i hears a

pulse at time tp that is less than T/n0 (i.e. 1/n0 of a firing

cycle) away from its last firing, node i will increase its state

variable by an amount ε so that its firing in the next cycle is

pushed earlier and further away from the firing of the current

node. On other hand, in (2), when node i hears a pulse at time

tp that is less than T/n0 away from its scheduled firing, it will

push its firing to a later instant in time. However, if a node is

expected to fire beyond T/n0 of the current firing, then it will

not adjust its phase since it is safely beyond the minimum

required spacing (assuming that it is T/n0). By employing

the update rule of (1) or (2) (or both), the spacing between

firings will be pushed apart, but by no more than T/n0.

We can distinguish between the states of strict and weak
desynchronization as follows:

Fig. 1. An example of the PCO dynamics and update.

Definition 1: The network is strictly desynchronized after t if

consecutive firing events are always separated by a constant

interval and the firing time of each node within each firing cy-

cle remains the same.

Definition 2: It is weakly desynchronized after t if consecu-

tive firing events are always separated by a constant interval

but the firing time within each firing cycle may be shifting.

In the proposed protocol, three cases may occur.

Case I: If the number of nodes n > n0, the network will be

weakly synchronized. In this case, even though the separation

of consecutive firings remains constant, the firing time does

not remain fixed in each firing cycle.

Case II: If n = n0, there is only one fixed point for the pro-

tocol, which corresponds to have all nodes separated by T/n
with a stable firing pattern.

Case III: If n < n0, then there is an entire interval of possible

fixed points, all leaving a temporal gap between two nodes

which is at least ≥ T/n0.

The most interesting aspect of these cases is the fact that

the dynamics tend to force the nodes to be separated by T/n0,

but if n > n0 that is physically impossible. When n and

n0 are very different the nodes keep moving their firing time

without rest, even though they eventually will tend to move in

a pattern that makes the separation among pulses constant (a

fixed point). The closer is n0 to n, the greater are the odds of

being strictly synchronized (see Section 4). We would like to

remark that, based on the number of pulses heard, the correct

number of nodes within the network can be correctly adjusted,

and updated in view of departures and new nodes joining the

system.

An example of f in the PCO update rules (1) and (2) is

f(φ) = − ln (c(1/n0 − φ)) , c > 0. (3)

In particular, if we consider only the coupling for φi(tp) ∈
(1 − 1

n0
, 1] and by setting n0 = 1, c = 1 and ε = − ln(1 −

α) > 0, we have equivalently the dynamics of the Inverse-
MS [4]. Hence, this shows that the PCO desynchronization

primitive described above subsumes the Inverse-MS protocol.

Note that precisely because n0 = 1 < n, Inverse MS can

only weakly synchronize, but strict synchronization is possi-

ble with a simple change in dynamics.

An alternative model with concave dynamics and positive

coupling, as shown in Figure 1, is given by:

f(φ) = tan (0.5πn0φ) . (4)
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We will refer to the models (3) and (4), inspired by the FireFly

synchronization mechanism, to as DEFLYLOG and DEFLY-

TAN, respectively.

2.1. Practical Issues

In the proposed strategy, the interaction among nodes is

achieved through the emission and reception of short pulses.

Perfect coupling is attained when the pulses have zero pulse

duration, i.e. delta functions, or when the channel is noiseless.

In practice, the actual coupling can be carried out by having

each node transmit a pulse p(t) with root-mean square (rms)

bandwidth β, which has good time localization properties.

Noise causes false alarms and missed detections as well

as time of arrival estimation errors. The false detection of a

pulse may cause a node to wrongly shift to a new phase ac-

cording to the dynamics of the function f . The effect of this

error is determined by the convexity of the function f and the

greater the convexity the greater the error. Missed detection

simply delay the convergence. In general, given that false

alarms are error sources, a detector based on Newman Pear-

son (fixed false alarm) criterion seems the most appropriate.

Concurrently, the node can estimate the arrival time. Assum-

ing a deterministic frequency flat channel with gain |hij | and

perfect detection, the Cramer-Rao lower bound (CRLB) of

time estimation is N0
2|hij |2Epβ [6], where Ep is the energy of

the pulse. We can see that the estimation error reduces as the

energy or the bandwidth of the pulse increases. This poses a

tradeoff between the bandwidth of the system (or the length

of the reservation period) and the accuracy of the schedule.

Propagation delays also affect the convergence. However, if

T >> p(t) this effect can be neglegted.

3. A PCO-BASED MAC MECHANISM

For PCO to be functional, some amount of idle time has to be

left between the pulses that are fired. The model clearly relies

on having signals concentrated in time relative to the period.

If these signals were data packets, the model essentially stipu-

lates the absence of collisions from the start and spacing these

non colliding packets equally in time has no real purpose. On

the other hand, waiting for the PCO to converge, as proposed

by [4] is in many ways problematic, because it does not ac-

knowledge the need to adapt to a changing number of nodes

trying to access the medium. Hence, the question that we

briefly address in this section is how to negotiate the trans-

mission of data for a prolonged period.

To utilize the PCO primitive for multiple access, a rea-

sonable option is to dedicate to it a fraction of time at the

beginning of each frame (i.e. a reservation phase) while leav-

ing the rest of the frame (i.e. the transmission phase) for data

transmission, according to a schedule proportional to what is

agreed upon in the reservation phase through the spacing of
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Fig. 2. DEFLYTAN: (Bottom) Phase difference for n0 = 7
and ε = 5 (black), ε = .5 (blue), ε = .05 (dotted black).

(Top) Firing times of the nodes within each firing cycle.

the firing events. There is a vast literature that discusses reser-

vation based MAC strategies (see e.g. [5]). Typically, these

protocols use a CSMA access policy on the reservation phase

of the frame transmitting mini-packets. Then, the nodes trans-

mit proportionally longer packets containing their data in the

dedicated part of the frame. The PCO primitive can be used

in a similar fashion, as a reservation mechanism. The main

advantages of PCO are architectural, because PCO requires

an extremely elementary logic and circuitry to work.

Normally in reservation-based MAC protocols a node that

needs to transmit and that is successful in reserving its slot

transmits only once. When using the PCO mechanism, this

approach does not make sense. In fact, because PCO allows

to reach a fair schedule among the nodes after a few itera-

tions, the nodes cannot stick with the schedule that they ob-

tain at their first attempt; they should, instead, divide their

payload in several sub-packets, each containing a fraction of

the data that is proportional to the time between their firing

and the next firing in the reservation phase. If the same group

of sources will persist sufficiently, their data will be served

equally. Additions of new nodes and departures will be grace-

fully accomodated. Unfortunately, the greater the fragmenta-

tion the greater is the overhead. The study of this trade-off,

however, goes beyond the scope of this paper.

4. NUMERICAL RESULTS

In this section, we study the performance of the proposed

PCO-based primitives under two different PCO dynamics,

namely, DEFLYLOG and DEFLYTAN described in (3) and

(4), respectively. In the simulations, we consider only the

update rule in (1) since the other rules perform similarly.

Case 1 : n0 < n:
When n0 < n, the nodes in the network will only be able

to reach weak synchronization as mentioned in Section 2. To

see this, we show in Fig. 2 the evolution of the difference in

firing times between each node and node 1 for DEFLYTAN
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Fig. 3. Accuracy of desired schedule with respect to ε, with

n = 10 and different values of n0, after 50 firing cycles.

scheme. That is, with t
(m)
pi being the m-th firing time of node

i, we plot Δi[m] = t
(m)
pi − t

(m)
p1 with respect to the rounds of

firing m. Here, we set n0 = 7 and n = 10. We can see that,

in fact, the spacing between neighbors’ firings converge to a

constant value. However, the convergence state and the speed

of convergence may depend on the coupling strength ε. More-

over, even though the spacing is fixed, it is not guaranteed that

the exact firing time of a node within each firing cycle (i.e.

within each length-T interval) may remain fixed. To confirm

this, we reported, in the upper right corner of the same figure,

the absolute firing time of each node within each length-T
interval, for ε = 0.5. We can observe that the exact firing

time in each firing cycle does not remain fixed, even though

the phase difference between the nodes tends to be constant.

The DEFLYLOG scheme behaves similarly and thus the plot

is omitted due to space limitations.

In order to achieve a fair and constant scheduling in each

frame, the firing of nodes should converge to a state where the

spacing is equal to T/n for any neighboring firings. When

this is achieved, the absolute firing time in each cycle will

remain fixed, i.e. strong convergence is reached. To observe

the system’s ability to achieve this state, we consider the MSE

metric MSE[m] = E
[∑n

i=1(T/n−Δi[m])2
]
. In Fig. 3, we

plot the MSE as a function of the coupling strength ε for both

DEFLYTAN and DEFLYLOG with n0 = 3, 5, 7, 9 (< n =
10), after 50 firing cycles. We can see that an optimal value

of ε exists but varies for different values of n0. Moreover, the

error tends to be smaller as n0 becomes closer to n.

We would like to remark that the Inverse MS scheme pro-

posed in [4] corresponds to DeFlyLOG with n0 = 1. In this

case, only weak convergence can be attained and the conver-

gence depends greatly on the coupling strength ε.

Case 2: n0 = n:
For n0 = n = 10, we shown in Fig. 4 (top) the evolution

of the phase differences and the firing times of the nodes for

DEFLYLOG, with ε = 5. We see that, as time evolves, the

exact firing time of a node within each firing cycle (i.e. within

50
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Fig. 4. DEFLYLOG for n = 10. Top: phase differences

(left) and firing times (right) with n0 = 10. Bottom: phase

differences (left) and firing times (right) with n0 = 20.

each length-T interval) remains fixed after a sufficient number

of iterations, and the nodes achieve the desired T/n spacing.

Case 3: n0 > n:
In Fig. 4 (bottom), we consider the case where n0 = 20 while

n = 10 for DEFLYLOG. Again, the network converges to a

state where a spacing of at least T/n0 is guaranteed for all

nodes, and the firing times of the nodes within each firing cy-

cle tend to a constant value. We would like to remark that, in

our experiments, we also observe that the convergence occurs

faster for the same coupling strengths when n0 is larger since

the nodes get pushed more easily to the boundary of T/n0,

but this is omitted due to space limitations. As shown in Fig.

4, strong convergence is achieved for n0 ≥ n.
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