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Abstract-We propose a BER improved power allocation scheme 
for D-STTD systems over i.i.d. Rayleigh fading channels under the 
QR-based successive detection framework. Instead of relying on 
BER under a fixed channel realization, the adopted design criterion 
is the mean BER (assuming there is no inter-layer error 
propagation) averaged with respect to the channel distribution. 
Such a design metric has two-fold advantages: (i) It is analytically 
tractable and is closely related to a block error probability upper 
bound when inter-layer error propagation occurs, and (ii) There is 
no need for repeated feedback of the instantaneous channel 
information. By exploiting a distinctive channel matrix structure 
unique to D-STTD systems we derive a closed-form approximate 
upper bound of the considered BER metric; through minimization 
of this bound an optimal power allocation scheme is obtained. 
Numerical simulation is used to illustrate the performance of the 
proposed method. 

Index Terms: Space-time block codes; successive detection; power 
allocation; bit error rate; QR decomposition. 

I. INTRODUCTION

  Spatially multiplexing multiple groups of orthogonal 
space-time block coded (STBC) signals is one key approach to 
realizing high-rate yet high-reliability wireless communications 
[2], [9], [12]. The double space-time transmit diversity 
(D-STTD) scheme [6], in which two Alamouti signal groups [1] 
are simultaneously transmitted, is the building block for such a 
system configuration. There have been many related research 
works reported for D-STTD systems, including antenna 
shuffling to combat channel spatial correlation [6], [8], adaptive 
modulation [3], and efficient low-complexity receiver designs 
[4], [5], [9]. 

QR-based successive symbol detector can strike a 
bit-error-rate (BER) performance balance between linear 
equalization and joint maximum-likelihood (ML) decoding. 
Such a scheme has been widely considered for signal detection 
in D-STTD and general multi-group STBC systems [2], [4]. 
This paper addresses the QR based successive signal detection 
problem for D-STTD systems, focusing on further symbol 
power loading for improving the BER performance. There have 
been many plausible performance measures for QR-based 
successive signal recovery [11], [13]-[15], depending on 
whether or not inter-layer error propagation is taken into 
account. The average BER with errorless front-layer decision 
feedback, although being merely a lower bound of the true 
mean error rate, remains simple to characterize and, moreover, 
is closely related to an upper bound of the block error 
probability when error-propagation occurs [11]: it thus serves 
as an efficient and meaningful performance metric accounting  

for the actual error rate outcome. Motivated by this fact and to 
also guarantee a performance improvement regardless of the 
instantaneous channel conditions, we propose to design the 
power loading weights for D-STTD transmission toward 
minimizing such a mean BER, averaged with respect to the 
channel distribution. Specifically, by exploiting a distinctive 
channel matrix structure of the D-STTD transmission we first 
derive an explicit formula of the associated QR-decomposition. 
Based on this result, we then derive an approximate closed- 
from upper bound of the considered BER metric. Through 
minimizing this bound the power allocation factors are obtained 
via numerical search. The proposed scheme depends only on 
the link SNR but not on the instantaneous channel gains: 
repeated channel state update via feedback is no longer needed. 
Simulation results show that the QR receiver combined with the 
proposed power allocation compares favorably with the 
zero-forcing (ZF) V-BLAST detector [10], in terms of both 
simulated BER and algorithm complexity. 

II. PROBLEM STATEMENT

A. System Model and Basic Assumptions 

  We consider a D-STTD system with symbol power loading 
over a flat-fading channel. Following [6] the input-output 
relation, in terms of block signals, can be described asa
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where y  is the received signal vector, n  is a zero-mean 

complex white Gaussian noise with covariance 0 4N I , H  is 

the effective channel matrix with ijh  being the channel gain 

between the (j,i)th transmit-receive antenna pair, js  is the 

symbol sent through the jth transmit antenna, and jp  is the  

a. The symbols *( ) , ( )T , ( )H , nI , det() , and { }diag x

denote, respectively, the complex conjugate, transpose, Hermitian, 
the n n×  identity matrix, determinant, and the diagonal matrix 
with elements of the vector x  on the main diagonal. 
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power loading factor for js  satisfying the power 

normalization constraint 4 2
1 4i ip= = . We assume that the 

channel gains ijh ’s are i.i.d. zero-mean complex white 

Gaussian with unit-variance. 

B. BER of QR-Based Successive Detection 

  By factorizing =H QR , where Q  is unitary and R  is 

upper triangular, and multiplying (2.1) from the left by HQ ,
we have 

{ }    1 4 1 2 3 4: , ,
TH Hdiag p p s s s s= = +y Q y R Q n . (2.2) 

Since R  is upper triangular, successive symbol detection 
through canceling the contributions of the previously detected 
components can be performed. We assume QPSK modulation is 
used with average symbol power equal to sE ; the 
generalization of our results to high-order constellations are 
straightforward by using related BER expressions in terms of Q 
function, as in [11]. As long as the symbol in each stage is 
correctly detected and, thus, there is no layer-wise error 
propagation, the space-time model (2.2) decouples into four 
independent links. The resultant average BER, given a channel 
realization h , is 
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where iiR  denotes the ith diagonal entry of R ,

0: /sE N=  is the signal-to-noise ratio, and ()Q  is the 
Gaussian tail function. We emphasize that, when inter-layer 
error propagation occurs, |4 bP h  is an upper bound for the 

block error probability [11]. This implies that, if |bP h  is small, 

the decision performance can be potentially improved even in 
the presence of inter-layer error propagation. Motivated by this 
fact and also to devise a solution irrespective of different 
channel realizations, we propose to design ip ’s by minimizing 

|bP h  averaged with respect to the channel distribution, i.e., 
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This is addressed in the next section. 

III. MAIN RESULTS

  Based on the well-known Chernoff bound for Q function, we 
have from (2.4) 
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The proposed power allocation scheme is based on an explicit 
(but approximate) formula of the upper bound (3.1). For this we 
shall first specify the diagonal entries iiR ’s in terms of the 

channel gains ijh ’s, 1 4i ; this will be done in Section 

III-A. Based on the established results, in Section III-B we then 
derive a closed-form expression of the upper bound (3.1). 

A. Formulae of iiR ’s

Recall from (2.1) that the effective channel matrix H
consists of four Alamouti’s blocks [1]. By exploiting this 
property the formulae of iiR ’s can be obtained as follows. 

Proposition 3.1: Let us partition the channel matrix H  in (2.1) 

into four 2 2×  submatrices as 1 2

3 4
=
H H

H
H H

, and let 

=H QR  be an associated QR-decomposition. Then the 

diagonal entries iiR , 1 4i , in R  are given by 
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  [Proof]: The proof is based on an explicit expression for Q
and R  constructed according to [7], and the detailed 
derivation is relegated to the Appendix.                 

B. Upper Bound of bP  in Closed-Form 

  As 11 22R R=  and 33 44R R=  (cf. (3.2) and (3.3)), we can 

rewrite bP  in (3.1) into 
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In what follows we will derive analytic expressions for 1  and 

2 ; this in turn yields a closed-form upper bound of bP .

i) Analytic Form of 1 : By definitions of 1H  and 3H , we 

have
2 2

1 11 21det( ) h h= +H  and 
2 2

3 12 22det( ) h h= +H ,

which together with (3.2) imply 
2 2 2 2 2

11 11 21 12 222 2 2 2 2R h h h h= + + + .   (3.5) 

Since 
2

2 ijh  is a central chi-square random variable with 

degrees-of-freedom equal to two, 
2

112 R  is thus central 

chi-square distributed with degrees-of-freedom equal to eight, 
with the probability density function (PDF) given by 
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where ( )  is the Gamma function. By performing a change 

of variable the PDF of 11R  is obtained as 
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211
11 11

2
( ) exp( )

(4 1)!

R
f R R

+

= .     (3.7) 

2750



With (3.7), the summand in 1  becomes 
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where (a) is obtained by performing integration with respect to 

11R . Based on (3.8), a closed-form expression for 1  is 
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ii) Analytic Approximation of 2 : We shall note that the 

closed-form expression of 1  in (3.9) hinges entirely 

chi-square nature of 
2

112 R . Such a property, however, no 

longer holds for 
2

332 R , since according to (3.3) 

straightforward manipulations show 
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where 
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It seems quite formidable to analytically characterize the exact 

PDF of 
2

332 R  based on (3.10). To sidestep this difficulty, we 

will instead seek for an approximate PDF via curve-fitting to 

the simulated density of 
2

332 R . Through intensive numerical 

test and curve fitting procedures (details omitted due to space 

limitation) it is found that the true density of 
2

332 R  is well 

approximated by the following Gamma PDF: 

1
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(3.12)

Figure 1 shows the computed histogram of 
2

332 R  and the 

proposed approximate Gamma PDF (3.12); the proposed 
analytic approximation (3.12) is seen to well predict the 
simulated results. With the aid of (3.12), an approximate PDF 
of 33R  is in turn found as 
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Based on (3.13), the summand in 2  can be approximated by 
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and hence 
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Combining (3.4), (3.9), and (3.15), bP  in (3.4) can thus be 
(approximately) upper bounded by 
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We thus propose to design the power loading factors 
( )1 2 3 4, , ,p p p p  toward minimizing the average BER upper 
bound in (3.16), subject to the power normalization constraint 
4 2
1 4ii p= = . As the cost function is highly nonlinear in ip ’s,

there do not seem to exist closed-form optimal solutions. 
Instead, the problem is solved via numerical search (e.g., by 
using fmincom in MATLAB Optimization Toolbox). 

VI. PERFORMANCE

We compare the proposed approach with four other schemes, 
namely, linear ZF receiver, Stamoulis’s decoupled signal 
recovery scheme [9], QR receiver without power loading, and 
the ZF V-BLAST detector [10], in terms of simulated BER. 
The proposed power loading factors via minimizing the 
closed-form bound in (3.16) are obtained by fmincom in 
MATLAB Optimization Toolbox. The results are shown in 
Figure 2. As we can see, the proposed method does outperform 
the QR receiver without power loading: there is about a 2 dB 
gain in the moderate-to-high SNR regime. Also, our method 
compares favorably with the ZF V-BLAST detector when SNR 
is above 20 dB. In terms of algorithm complexity, the ZF 
V-BLAST receiver involves signal ordering and pseudo-inverse 
computations; the total flop cost is 576 multiplications and 484 
additions. The QR receiver involves mainly a QR 
decomposition which calls for 262 multiplications and 112 
additions: it is thus more computationally efficient compared 
with the V-BLAST based solution. 

APPENDIX: PROOF OF PROPOSITION 3.1

  Since 2det( )H H
i i i i i= =H H H H H I , through manipulations 

it can be shown that 
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It is straightforward to verify that 1Q  in (A.1) is unitary; since 

2 3 4 3 1 3
H H H H H H+H H H H H H  remains an Alamouti block [7], 

2Q  in (A.2) is also unitary. Combining (A.1) and (A.2) we 

have 1 2
H H=H Q Q R , and hence =H QR  with 1 2=Q Q Q

is an associated QR decomposition. We finally note that 

( ) ( )
2 3 4 3 1 3

det( ) det det

det( )H H H H H H

= =

= +

H QR R

H H H H H H
,   (A.3) 

where the second equality holds since Q  is unitary and the 
last equality follows by definition of R  in (A.2). The 
assertion thus follows from (A.2) and (A.3).              
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