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ABSTRACT

The symbol error performance of spatially correlated multi-antenna
systems is analyzed herein. When the transmitter only has statistical
channel information, the use of space-time block codes still permits
spatial multiplexing and mitigation of fading. The statistical infor-
mation can be used for precoding to optimize some quality measure.
Herein, we analyze the performance in terms of the symbol error rate
(SER). It is shown analytically that spatial correlation at the receiver
decreases the performance both without precoding and with an SER
minimizing precoder. Without precoding, correlation should also be
avoided at the transmitter side, but with an SER minimizing precoder
the performance is actually improved by increasing spatial correla-
tion at the transmitter. The structure of the optimized precoder is
analyzed and the asymptotic properties at high and low SNRs are
characterized and illustrated numerically.

Index Terms— Linear Precoding, Majorization, MIMO Sys-
tems, Orthogonal Space-Time Block Codes, Symbol Error Rate.

1. INTRODUCTION

The use of multiple antennas at the transmitter and receiver sides
in wireless communication systems has the potential of dramatically
increasing the throughput in environments with sufficient scattering.
With full channel state information (CSI) available at both the trans-
mitter and receiver sides, low complexity receivers exist that can
realize this throughput increase [1]. Unfortunately, full CSI at the
transmitter is unrealistic in many fast fading scenarios since it would
require a prohibitive feedback load. The long-term channel statistics
can, on the other hand, usually be considered as known since they
vary much slower than the channel realization. When required, in-
stantaneous CSI can also be achieved at the receiver from training
signalling [2].

The primary use of multiple antennas is to increase the reliabil-
ity by mitigating fading and to increase throughput by transmitting
several data streams in parallel, cf. [3]. When the transmitter is com-
pletely unaware of the channel, one common way of achieving these
two goals is to use orthogonal space-time block codes (OSTBCs)
[4]. Herein, we assume that the transmitter has statistical CSI, which
makes it possible to adapt the coding to the channel statistics. Linear
precoding of OSTBCs was proposed in [5], and has recently been
analyzed in [6] and [7] with respect to the symbol error rate (SER).
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In this paper, we consider the SER performance of spatially cor-
related multiple-input multiple-output (MIMO) systems with OST-
BCs. The influence of precoding and correlation on the SER will be
analyzed in terms of Schur-convexity [8]. Previously, the Chernoff
bound on the SER has been analyzed in this manner assuming a cer-
tain type of modulation [9]. The error performance was shown to
decrease with increasing correlation in most scenarios, except when
an SER minimizing precoder was employed; then, the performance
improves as the correlation increases at the transmitter side. Herein,
the results of [9] are generalized to cover a much larger class of mod-
ulation schemes and to consider the exact value of the SER.

First, an introduction to the problem and to the mathematical
technique of majorization will be given. Then, we will review the
SER expressions for PAM, PSK, and QAM constallations, and show
how they all share the same general structure. This result will be
exploited in the analysis of the SER, where we consider the case
of space-time coded transmissions without precoding and with SER
minimizing precoding. The impact of spatial correlation on the SER
will be derived analytically and then illustrated numerically.

1.1. Notation

Vectors and matrices are denoted with boldface in lower and upper
case, respectively. The Kronecker product of two matrices X and
Y is denoted X ⊗ Y. The vector space of dimension n with non-
negative and real-valued elements is denoted R

n
+. The Frobenius

norm of a matrix X is denoted ‖X‖.

2. SYSTEM MODEL AND PRELIMINARIES

We consider a correlated Rayleigh flat-fading channel with nT trans-
mit antennas and nR receive antennas. The channel is represented
by the matrix H ∈ C

nR×nT and is assumed to follow the Kronecker
model

H = R
1/2
R H̃R

T/2
T , (1)

where RR ∈ C
nR×nR and RT ∈ C

nT ×nT are the positive semi-
definite correlation matrices at the receiver and transmitter side, re-
spectively. H̃ ∈ C

nR×nT has i.i.d. complex Gaussian elements with
zero-mean and unit variance. The receive and transmit correlation
matrices are arbitarily spatially correlated.

The transmission takes place using OSTBCs that code K sym-
bols over T symbols slots (i.e., the coding rate is K

T
). Let s =

[s1, . . . , sK ]T ∈ C
K represent these K data symbols, where each

symbol si ∈ A has the average power E{|si|2} = γ and belongs to
the constellation set A (different constellations will be considered).
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These symbols are coded in an OSTBC matrix C(s) ∈ C
B×T that

fulfills the orthogonality property C(s)C(s)H = ‖s‖2I, see [4] for
details. The spatial coding dimension is B and a linear precoder
W ∈ C

nT ×B with the power constraint tr(WWH) = 1 is used
to project the code into advantageous spatial directions [5]. Observe
that the precoder is normalized such that the average transmit power
allocated per symbol is E{‖WC(s)‖2}/k = γ. Under these as-
sumptions, the received signal Y ∈ C

nR×T is

Y = HWC(s) + N, (2)

where the power of the system has been normalized such that the
additive white noise N ∈ C

nR×T has i.i.d. complex Gaussian ele-
ments with zero-mean and unit variance. As shown in [6, 10], the use
of OSTBCs makes it possible to decompose (2) into K independent
and virtual single-antenna systems as

y′
k = ‖HW‖sk + v′

k, k = 1, . . . , K, (3)

where v′
k is complex Gaussian with zero-mean and unit variance.

2.1. Expressions for the Symbol Error Rate

Herein, the performance measure will be the SER; that is, the proba-
bility that the receiver makes an error in the detection of received
symbols. The SER depends strongly on the signal-to-noise ratio
(SNR) and the type of symbol constellation. Next, we will present
SER expressions for some commonly considered constellations, but
first we introduce a definition.

Definition 1. Let Φ � RR ⊗ (WWHRT ) and define the function

Fa,b(g) � 1

π

∫ b

a

dθ

det
(
I + γg

sin2(θ)
Φ

) , g ≥ 0, b ≥ a. (4)

We will consider the SER for three different types of constel-
lations: PAM, PSK, and QAM. Let gPAM � 3

M2−1
, gPSK �

sin2( π
M

), and gQAM � 3
2(M−1)

. Then, the exact SER of the system

in (3) was derived in [11, 6] and can be expressed as

SERPAM =
2(M−1)

M
F0, π

2
(gPAM),

SERPSK = F
0, M−1

M
π
(gPSK), (5)

SERQAM =
4(
√

M−1)

M

(
F0, π

4
(gQAM) +

√
MF π

4 , π
2
(gQAM)

)
,

for M -PAM, M -PSK, and M -QAM constellations, respectively.
Observe that the integral in Definition 1 is the main building stone
in the SER expressions. The determinant in (4) can be expressed as

det
(
I +

γg

sin2(θ)
Φ

)
=

nT nR∏
i=1

(
1 +

γg

sin2(θ)
λi(Φ)

)
, (6)

where λi(Φ) denotes the ith largest eigenvalue of Φ. Hence, we
conclude that the eigenvalues of Φ (and not the eigenvectors) deter-
mines the SER. In the next sections we will analyze how the system
performance depends on the spatial correlation and thus we focus on
comparing systems with different eigenvalue distributions.

2.2. Definitions of Majorization and Schur-Convexity

The spatial correlation can be measured in the distribution of eigen-
values of the correlation matrices; low correlation is represented
by eigenvalues that are almost identical, while high correlation
means that a few eigenvalues are dominating. Herein, we assume
that all eigenvalues are ordered in non-decreasing order and we
will use the notion of majorization to compare systems [8]. If
x = [x1, . . . , xM ]T and y = [y1, . . . , yM ]T are two non-negative
vectors, then we say that x majorizes y if

m∑
k=1

xk ≥
m∑

k=1

yk, m=1, . . . , M − 1, and

M∑
k=1

xk =

M∑
k=1

yk.

This property is denoted x � y. If x and y contain eigenvalues,
then x � y corresponds to that x is more spatially correlated than y.
Majorization only provides a partial order of vectors, but is still very
powerful due to its connection to certain order-preserving functions:

A function f(·) is said to be Schur-convex if f(x) ≥ f(y) for
all x and y, such that x � y, and Schur-concave if f(x) ≤ f(y).

3. ANALYSIS OF THE SYMBOL ERROR RATE

In this section, we will analyze the impact of spatial correlation on
the system performance. The analysis is divided into two cases:
without precoding and with SER minimizing precoding. Observe
that all analytic results in this paper are derived for arbitrary func-
tions of the type introduced in Definition 1 (and linear combinations
of them). The three SER functions in (5) are just examples of func-
tions of this type, so the results can potentially be used for other
functions (either corresponding to SERs or something else).

In this section, we let the eigenvalues of the correlation matrices
RT and RR be gathered in non-decreasing order in λT ∈ R

nT
+ and

λR ∈ R
nR
+ , respectively.

3.1. Schur-Convexity Without Precoding

First, we consider the case without linear precoding, represented by
B = nT and W = 1√

nT
I. Under these circumstances, the follow-

ing theorem and its corollary show that the SER always increases
with the spatial correlation (i.e., the performance is degraded).

Theorem 1. Consider the function Fa,b(g) with Φ � RR ⊗ RT
nT

.
This function is Schur-convex with respect to λT when λR is fixed
and Schur-convex with respect to λR when λT is fixed.

Proof. The proof follows by analyzing the integrand of (4) in a sim-
ilar way as in the proof of Theorem 1 in [9].

Corollary 1. The SERs in (5) with M -PAM, M -PSK, and M -QAM
are all Schur-convex with respect to the receive correlation for fixed
transmit correlation, and vice versa.

3.2. Schur-Convexity With Optimal Precoding

Next, we consider the case when the precoder W is chosen to mini-
mize the SER. For this purpose, we define the following function.

Definition 2. Let Φ � RR ⊗ (WWHRT ) and define the function

Ga,b,c,d(g) � min
W, tr(WWH )=1

C1Fa,b(g) + C2Fc,d(g), (7)

where C1 and C2 are non-negative constants, b ≥ a, and d ≥ c.
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Observe that all the SER expressions in (5) can be expressed
as Ga,b,c,d(g) when SER minimizing precoding has been applied.
Let the eigenvalue decomposition of the transmit correlation matrix
be RT = UT ΛT UH

T , where the diagonal matrix ΛT contains the
eigenvalues in non-decreasing order and the unitary matrix UT con-
tains the corresponding eigenvectors. It is known that the precoder
that gives Ga,b,c,d(g) (i.e., the SER minimizing precoder) can be ex-
pressed as W = UT Δ, where Δ ∈ C

nT ×B is a rectangular diago-
nal matrix [6]. Hence, we have that WWH = UT ΛW UH

T , where
ΛW � ΔΔH = diag(p1, . . . , pB , 0, . . . , 0) represents the power
assigned to different transmit eigenmodes. The following lemma
gives the asymptotically optimal precoders at low and high SNRs
(the latter was proved in [6] in the case of correlation with full rank).

Lemma 1. Consider the function Ga,b,c,d(g) and let the optimal
precoder be denoted W. Let the SNR be represented by γ and
let RT = UT ΛT UH

T be the eigenvalue decomposition of RT ,
where the diagonal matrix ΛT contains the eigenvalues in non-
decreasing order and the unitary matrix UT contains the corre-
sponding eigenvectors. Then, W is given by W = UT ΔŨ, where
Ũ ∈ C

B×B is an arbitrary unitary matrix and ΛW � ΔΔH is
diagonal and has rank(ΛW ) ≤ B. The optimal power allocation
at low SNR is ΛW = diag(1, 0, . . . , 0) (i.e., selective alloca-
tion to the strongest eigenmode), while the allocation is ΛW =
diag( 1

B̃
, . . . , 1

B̃
, 0, . . . , 0) at high SNR (i.e., equal allocation to the

B̃ dominating eigenmodes) where B̃ = min(B, rank(RT )).

For an SER minimizing precoder, the following theorem and its
corollary show how the SER behaves with respect to the spatial cor-
relation. The asymptotic results of Lemma 1 play an important role
since the Schur-convexity properties change with the SNR.

Theorem 2. The function Ga,b,c,d(g) is Schur-convex with respect
to λR (when λT is fixed) independently of the SNR. The function is
Schur-convex with respect to λT (when λR is fixed) at high SNR,
while it is Schur-concave at low SNR.

Proof. The proof follows from Schur’s condition [8] and Lemma 1
by differentiation of Ga,b,c,d(g) and some identification.

Corollary 2. Consider the SERs in (5) with M -PAM, M -PSK, and
M -QAM when an SER minimizing linear precoder is used. These
function are Schur-convex with respect to the receive correlation (for
fixed transmit correlation). They are also Schur-convex with respect
to the transmit correlation (for fixed received correlation) at high
SNR, but Schur-concave at low SNR.

From Corollary 2, we draw the conclusion that even with an
optimal precoder, correlation at the receiver side will always degrade
the performance. The combination of SER minimizing precoding
and spatial correlation at the transmitter side will however improve
the performance at low SNR, while correlation still might be bad at
high SNR. Thus, it is of practical importance to quantify what low
SNR actually means in this context. An indication is given by the
following lemma that treats an upper bound on Fa,b(g).

Lemma 2. Consider the following upper bound on Fa,b(g):

Fa,b(g) ≤ 1

π

b − a

det
(
I + γgΦ

) . (8)

The expression on the right hand side of (8) is Schur-concave with
respect to the transmit correlation (for fixed receive correlation) for
all SNR γ such that γ ≤ 1

gtr(RT )tr(RR)
.
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Fig. 1. The SER minimizing (normalized) power allocation ΛW =
diag(p1, p2, p3, p4) as a function of the SNR. The transmitter and
the receiver are equipped with four antennas, with a fixed correlation
of 0.5 between adjacent antennas in each array [12].

Proof. The expression in (8) is the Chernoff bound on Fa,b(g). The
Schur-concavity follows from Schur’s condition [8], Lemma 1, and
a Maclaurin expansion that is valid for certain γ.

Next, the results of this section will be illustrated numerically
and it will become apparent that the SER is (at least approximately)
Schur-concave with respect to the transmit correlation for a much
larger SNR region than the one stated in Lemma 2.

4. NUMERICAL EXAMPLES

In this section, the precoder properties of Lemma 1 and the Schur-
convexity results of Corollary 2 will be illustrated numerically.
We consider a system where the transmitter and the receiver are
equipped with four antennas each. The antenna correlation follows
the exponential model [12], which in principle models a uniform
linear array (ULA) with the correlation between adjacent antenna
elements as a parameter. An OSTBC with rate 3/4 and a spatial
coding dimension of 4 is used, for example the one proposed in
[4], and the symbol constellation is 16-QAM. For normalization
purposes, we let tr(RT ) = tr(RR) = 1. Thus, the transmit power
(per data symbol) γ also equals the received SNR (with equal power
allocation) and the transmitted SNR.

Let the power allocation of the SER minimizing precoder be de-
noted ΛW = diag(p1, p2, p3, p4), where pk is applied to the kth
strongest transmit eigenmode. In Fig. 1, the SER minimizing power
allocation is given as a function of the SNR (in terms of γ). The
antenna correlation is fixed at 0.5 at both sides, which corresponds
to the eigenvalue distribution [0.5214, 0.2500, 0.1349, 0.0938]T . In
line with Lemma 1, we observe that all power is allocated to the
dominating eigenmode at low SNRs and that the system approaches
equal power allocation at high SNRs. In between these extremes, the
optimal power allocation has the typical waterfilling behavior.

Next, we keep the transmit correlation fixed at 0.5, while the
correlation between adjacent receive antennas is changed between
0 and 1 (i.e., completely uncorrelated and correlated, respectively).
The SER with SER minimizing precoding is shown in Fig. 2 at dif-
ferent SNRs. It is seen that the SER is Schur-convex with respect to
the receive correlation eigenvalues at all SNRs, which confirms the
results of Corollary 2.

Finally, we keep the receive correlation fixed at 0.5, while the
transmit correlation is changed from the completely uncorrelated to
the completely correlated case. The SER with SER minimizing pre-
coding is shown in Fig. 3 at different SNRs. At 0, 15, and 25 dB, the
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SER is Schur-concave (i.e., decreases with the spatial correlation).
At very high SNR (e.g., 35 dB), the SER is Schur-convex, while
there is a transisition interval when the SER first increases with the
correlation and then decreases again.

From Lemma 2, we expect the low SNR-region (where p1 = 1
and the SER is Schur-concave with respect to the transmit correla-
tion) to include γ ≤ 10 dB. In comparsion with the numerical ex-
amples, this condition seems rather strict. In Fig. 1, selective power
allocation (i.e, beamforming) is optimal for γ ≤ 17 dB, and it is
seen in Fig. 3 that the SER is Schur-concave for SNRs up to at least
25 dB. An important observation is that when the SER transistions
from a Schur-concave function to a Schur-convex function, it has
already reached such low values (below 10−6) that the dependence
on the spatial correlation is negligible. Thus, we conclude that the
SER is Schur-concave at low to medium SNRs and approximately
Schur-concave at high SNRs.

5. CONCLUSIONS

In this paper, the performance of spatially correlated Kronecker-
structured MIMO systems with orthogonal space-time block cod-
ing has been analyzed in terms of the symbol error rate. The re-
sults cover the exact SER for M -PAM, M -PSK, and M -QAM, but
also a wider range of functions that may correspond the SERs for
other constellations. Using majorization and the notion of Schur-
convexity, it has been shown analytically that the SER is Schur-
convex with respect to the spatial correlation at the receiver side (i.e.,
the error increases with the correlation). This holds both in the case
without precoding and with an SER minimizing linear precoder. The
SER is also Schur-convex with respect to the transmit correlation
without precoding, while transmit correlation actually improves the
performance when an SER minimizing linear precoder is used. Ana-
lytically, the SER is Schur-concave with respect to the transmit cor-
relation at low SNRs (i.e., the error decreases with increasing trans-
mit correlation) while it still becomes Schur-convex at high SNRs.
An approximate lower bound on the SNR region of Schur-concavity
has been derived, but as illustrated numerically, the SER is actually
approximately Schur-concave at all SNRs.

The SER minimizing precoder scales the eigenvalues of the
transmit correlation matrix, and the statistical waterfilling behavior
of these scaling factors has been illustrated numerically. Finally, it
has been shown that selective and equal power allocation is asymp-
totically optimal at low and high SNRs, respectively.
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