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Abstract— Recently, full rate and full diversity two-group (2Gp) 
and four-group (4Gp) decodable space-time block codes (STBC) 
derived from quasi-orthogonal STBC (QSTBC) and designed under 
diversity product maximization criterion have been proposed. In this 
paper, we derive an upper bound of diversity product for those STBCs 
and discover that the diversity product of the current 2Gp-QSTBC and 
4Gp-QSTBC has the potential to approach the upper bound for 8
transmit antennas. To this end, we propose an improved design of 2Gp 
and 4Gp STBC with increased diversity product for 8 transmit atennas
by allowing sufficient number of dimensions for constellation rotation. 
The diversity product of the proposed two-group decodable STBC 
achieves the derived upper bound.  
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I. INTRODUCTION

Orthogonal Space-Time Block Codes (OSTBC) [1] 
provide a promising transmission scheme in multi-antenna 
systems due to their full diversity and single-symbol 
maximum likelihood (ML) decoding. However, it is proven 
in [1] that their symbol rates are less than one when complex 
signal constellations and more than two transmit antennas are 
used. To increase the rate, the quasi-orthogonal STBCs 
(QSTBC) [2] were proposed by relaxing the orthogonality 
constraint. The full diversity can still be obtained by rotating 
the constellations of parts of the transmitted symbols [3]. In 
the case of eight transmit antennas, a full rate (rate one) and 
full diversity 2Gp-QSTBC with constellation rotation was 
presented in [4]. The symbols are separated into two groups 
and joint decoding of four symbols is performed. To reduce 
the decoding complexity, a coordinate interleaved orthogonal 
design (CIOD) with double symbols joint decoding was 
introduced in [5]. Recently, a full rate and full diversity 4Gp-
QSTBC, with a lower peak-to-average power ratio (PAPR) 
than that of the CIOD, has been proposed in [6], where 
double symbols are jointly decoded for eight transmit 
antennas since the transmitted symbols can be decoupled into 
4 groups.  

We focus on the analysis the 2Gp-QSTBC [4] and 4Gp-
STBC [6] for eight transmit antennas in this paper. They can 
be considered as QSTBCs with constellation rotation (CR) 
and interleaving the real and imaginary parts of different 
symbols before space-time coding. Both of the processes can 

be performed by an unitary transformation. The encoding 
process of 2Gp-QSTBC and 4Gp-STBC can be expressed as 

( )fC x                                   (1) 
Gpx U a                                   (2) 

where is an 8x8 space-time codeword, C ( )f is encoder of 
QSTBC, is a 16x16 unitary matrix for CR and 
interleaving, and and 

, (

GpU

1 1[ ... ... ]TI KI Q KQa a a aa

1 1[ ... ... ]TI KI Q KQx x x xx 8K ), are 16x1 real signal vectors 
composed of the real and imaginary parts of  and ka kx ,
respectively. The superscript ( )  denote matrix transpose. 
We define

T

k kI ka a ja Q and k kI kQx x jx , ( 1,2,...,8k ), 
where 1j , and the subscript ( )I  and ( )  denote the real 
and imaginary part of a complex scalar, respectively. 

Q

    It was shown in [7] that QSTBC symbols transmitted from 
different antennas can be completely decoupled if they are 
pre-processed by a decoupling matrix.  The decoupling 
process can be expressed as 

x Vs                                      (3) 
where is a real constant unitary matrix, and 

,
V

1 1[ ... ... ]TI KI Q KQs s s ss k kI kQs s js , . We can 
now define a new encoder as 

1,2,...,8k

( )g , which is a concatenation 
of  andV ( )f  as shown in Fig. 1. If there is no correlation 
between the real symbols 1 1... ...I KI Q KQs s s s , we can employ 
single real symbol ML decoding in the receiver [8]. However 
its transmit diversity order is only 2. 

s x C
( )g s

QSTBC: f(x)V

Fig. 1.    Encoder structure with decoupling property 

    We consider a class of STBCs with the unified framework 
as

( )gC s                                       (4) 
s Ua                                         (5) 

where is a real unitary matrix, such as for QSTBCs, U TU V
U I for the single-symbol decodable STBC proposed in [7], 
and for 2Gp-QSTBC [4] or 4Gp-QSTBC [6]. In 
this paper, we propose an improved design for two-group 
and four-group decodable STBC based on this unified 
framework with increased diversity product for eight 
transmit antennas. The contributions of this paper are: 

T
GpU V U
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Derivation of an upper bound of diversity product for 
those STBCs designed under the framework in (4) and 
(5). 

2737978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009



Consideration of sufficient number of rotation 
dimensions to allow more freedom in search for larger 
diversity product. 
Construction of a new four-group decodable STBC 
based on four-dimensional rotation with a larger 
diversity product but the same complexity as double 
symbols joint ML decoding. 
Construction of a two-group decodable STBC, which 
has the same complexity as four symbols joint ML 
decoding, but achieves the upper bound of diversity 
product. 

Notation: The superscript ( )H denotes transpose conjugate of 
a matrix (or vector).    stands for norm of a vector. The 
identity square matrix and zero matrix of proper size are 
denoted by  and , respectively. Re  and  denote 
the real and imaginary parts of X , respectively. de

and  denote the determinant, rank and 
trace, respectively, of X . ve  denotes the vectorization 
operation of matrix X , i.e., , where 

 is the  column of .

I 0 ( )X Im( )X
t( )X

( )Rank X ( )Trace X
( )c X

.1 .2 .( ) [ ... ]T T T T
nvec X X X X

.iX thi X

II. ALGEBRAIC STRUCTURE OF ENCODER ( )g s

Let TN  be the number of transmit antennas, RN  the 
number of receive antennas, and T  the number of time slots 
for one codeword. The number of transmitted symbols in 
each codeword is K . Here, we focus on QSTBC 
with . Without loss of generality, we consider 
the following codeword: 

8TT N K

1 2 3 4 5 6 7 8

2 1 4 3 6 5 8 7

3 4 1 2 7 8 5 6

4 3 2 1 8 7 6 5

5 6 7 8 1 2 3 4

6 5 8 7 2 1 4 3

7 8 5 6 3 4 1 2

8 7 6 5 4 3 2 1

( )

x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x

f
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x

x
          (6) 

    According to the analysis in [7], we can obtain its 
decoupling matrix as 

Re( ) Im( )
Im( ) Re( )

V' V'
V

V' V'
                           (7) 

where  
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

0 0 0
0 0 0 01

0 0 02
0 0 0 0
1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

j j j j 0

0
j j j

j j j j

j

j j j

V '

j

    Substituting (3) into (6), the dispersion form of the 
codeword ( )g s  can be written as  

1
( )

K

kI k kQ k K
k

g s sC s A A                        (8) 

where 2

1

K
l l

A  is a set of  complex matrices called 
dispersion matrices of 

TT N

( )g s . According to our analysis, they 
satisfy the following conditions: 

( )H
m lTrace A A 0 2

]

,       1            (9) 
,     1                 (10)  

m l K

( )H
l l TTrace NA A 2l K

    The codeword in (8) can be reformed in a vector form as 
( )vec C Gs                                   (11) 

where is a encoding matrix [9] defined as G
1 2 2[ ( ) ( ) ... ( )Kvec vec vecG A A A               (12) 

    From (9), (10) and (12), we have    
                                 (13) H

TNG G I

III. UPPER BOUND OF DIVERSITY PRODUCT

    In this section, we shall derive an upper bound of diversity 
product for STBCs designed under the framework in (4) and 
(5). Assuming the difference codeword as , if 'C C C

HC C  is of full rank for any pair of distinct codewords C
and , the diversity product [3] is given by 'C

1/ (2 )

'

1 min det( )
2

TH

C C
TN

C C                (14) 

    According to the theory of inequality, we know that 
( )det( )

TNH
H

T

Trace
N

C CC C            (15) 

    From (11), (13) and (5) we can derive 
2( ) ( ( )) ( ( ))H H

TTrace vec vec NC C C C a  (16) 
where 'a a a , 'a a  and ,

, ( ). We denote 
1 1[ ... ... ]TI KI Q KQa a a aa

1 1' [ ' ... ' ' ... ' ]TI KI Q KQa a a aa 8K

k kI ka a ja Q  and ' ' 'k kI ka a ja Q , ( ) are the 
signals from known constellations, e.g. quadrature-
amplitude-modulated (QAM). Obviously, the minimum 
Euclidean distance between two distinct points in the signal 
constellation is   

1,2,...,k K

min
'

min
a a

d a                            (17) 

    Combining (14)~(17) and , we obtain the upper 
bound of diversity product as 

TT N

min

2
ub

T

d
N

                            (18) 

    The upper bound of diversity product is uniquely 
determined by .mind

IV. PROPOSED  CODES

    The current 4Gp-QSTBC and 2Gp-QSTBC obtain their 
diversity product by optimal constellation rotation with 2 and 
4 degrees of freedom, respectively. However, their diversity 
products deviate from the bound given in (18) for 8TN  by a 
large margin because their rotation dimensions are not 
sufficient. In this section, we design two improved four-
group and two-group decodable STBCs to approach the 
bound by a rotation matrix with  6 dimensions.  

A.  Proposed four-group decodable STBC 
    We divide the symbols 1 1, ..., , , ...,I KI Q KQs s s s  into four 
groups as 1 1 3 5 7[ ]TI I I Is s s ss , 2 1 3 5 7[ ]TQ Q Q Qs s s ss ,

3 2 4 6 8[ ]TI I I Is s s ss , 4 2 4 6 8[ ]TQ Q Q Qs s s ss , and let  

k k ks U a 1,2,3,4, k                   (19) 
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where 1 1 2 1 2[ ]TI I Q Qa a a aa , 2 3 4 3 4[ T
I I Q Qa a a aa ] ,

3 5 6 5 6[ ]TI I Q Qa a a aa , 4 7 8 7 8[ T
I I Q Qa a a aa ] , and kU  is a real 

unitary matrix.  
    Combining the expressions in (3), (6) and (7), we obtain 

8 2 2 2 2
1 1 2 2

2 2 2 2
3 3 4 4

2 2 2 2
5 5 6 6

2 2 2 2 2
7 7 8 8

det( )

4 (( )
(
(
(

H

I Q I Q

I Q I Q

I Q I Q

I Q I Q

s s s s
s s s s
s s s s
s s s s

C C

)
)
))

         (20) 

where 'kI kI kIs s s , 'kQ kQ kQs s s , k kI kQs s js ,
' ' 'k kI kQs s js 1,2,...,8k, .  

     Denote 1 1 3 5 7' [ ' ' ' ' ]TI I I Is s s ss , 2 1 3 5 7' [ ' ' ' ' ]TQ Q Q Qs s s ss ,
3 2 4 6 8' [ ' ' ' ' ]TI I I Is s s ss , 4 2 4 6 8' [ ' ' ' ' ]TQ Q Q Qs s s ss  and 

'k ks s s k , .  To obtain the minimum of 
determinant expression in (20), without loss of generality, we 
can assume 

1,2,3,4k

2 3 4 0s s s . Then (20) can be rewritten as 
8 2 2 2

1 3 5 7det( ) 4 ( )H
I I I Is s s sC C 2 2        (21) 

    Equation (21) can be maximized for any 1 0s  with 
sufficient dimensions of constellation rotation. We consider 

1U  as a rotation matrix with 2
4( ) 6  degrees of freedom. A 

possible choice of  1U   is [10]  

5 5 4 4
1

6 6 4 4

6 6 5 5

3 3 2 2

2 2

3 3

1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1

0 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0

0 0 0 0 0 1

c s c s
c s s c
s c s c

c s c s

s c
s c

U

1 1

1 1

0 0
0 0

0 0 1 0
0 0 0 1

c s
s c

  (22) 

where cos( )i ic  and sin( )is i . Then we can obtain the 
optimal rotation angles 1 6~  that maximize 

1 1 'min det( )H
s s C C  in (21) through exhaustive computer 

search. In the case of  from conventional QAM 
constellation, we have 

1{ }Kk ka

1 2 3 4 5 6[      ]
[36.4145  20.1470  25.0290  -25.0290  20.1470  -25.5130 ]

opt  (23) 

    Substituting (23) into (22) yields the optimal rotation 
matrix. Similarly, other kU , , can be selected as 2,3,4k

1 2 3U U U U4                             (24) 
    Obviously, the four real symbols in each vector ks  are 
correlated due to the unitary transformation with the matrix 

kU , but there is no correlation among the vectors 1 4~s s ,
each ks  can thus be decoded independently. 

B.  Proposed two-group decodable STBC 
We divide the symbols 1 1, ..., , , ...,I KI Q KQs s s s  into two 

groups as 1 1 3 5 7 1 3 5 7[ T
I I I I Q Q Q Qs s s s s s s ss ] ,

2 2 4 6 8 2 4 6 8[ ]TI I I I Q Q Q Qs s s s s s s ss  and define ks  as 
k ks U ak ,                            (25) 1,2k

where 1 1 2[ ]T T Ta a a , 2 3 4[ ]T T Ta a a .

     Define 1 1 3 5 7 1 3 5 7' [ ' ' ' ' ' ' ' ' ]TI I I I Q Q Q Qs s s s s s s ss ,
2 2 4 6 8 2 4 6 8' [ ' ' ' ' ' ' ' ' ]TI I I I Q Q Q Qs s s s s s s ss , 'k ks s s k  , 

1,2k , and assume that 1 0s  and 2 0s . The 
determinant in (20) can now be rewritten as 

8 2 2 2 2
1 1 3 3

2 2 2 2 2
5 5 7 7

det( ) 4 [( ) ( )

( ) ( )]

H
I Q I Q

I Q I Q

s s s s

s s s s

C C
    (26) 

If we consider 1U  as a rotation matrix with 
degrees of freedom, it becomes intractable to find out the 28 
optimal angles by computer search due to the large 
computation. To tackle this problem, we limit the 
constellational rotation to 6 dimensions. The structure of 

2
8( ) 28

1U
is depicted in Fig. 2. 

1U 2U 1
TV

1U1a

2a

1x

2x
1cra

1s
1U

2cra

Fig. 2.    Structure of 1Û

    Rotating the symbols 2 4{a a }  with angle , while keeping 
the symbols 1 3{a a }  un-rotated, we obtain 

1k cr ka U a ,                         (27) 1,2k
where ka  is defined in (19), / 4  is a optimal rotation 
angle for conventional QAM proposed in [3], and 

1

1 0 0 0
0 cos( ) 0 sin( )
0 0 1 0
0 sin( ) 0 cos( )

U                       (28) 

    Similarly, we rotate cra , and  keep cra  un-rotated, i.e., 
1 1crx a ,    2 2 2crx U a                       (29) 

where  is a rotation matrix which is similar to (22) with  2U
1 ~ 6 replaced by 1 6~ .
We define 1x  and 2x  as

1 1 3 1 3[ ]TI I Q Qx x x xx , 2 5 7 5 7[ ]TI I Q Qx x x xx     (30) 
which can be substituted into codeword (6) to derive the 
QSTBC code. Alternatively, placing it under the unified 
framework, the 1s  is given as 

1 1
Ts V x1                                    (31) 

where 1 1 2[ T T Tx x x ] ,  from the equations in (3), (7) and (31), 
we can derive 

1

1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
1 1 1 1 0 0 0 01

0 0 0 0 1 1 1 12
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1

V
      (32) 

    After knowing  and , we obtain the optimal angles to 
maximize 

1U 1V

1 1 'min det( )H
s s C C  in (26) for conventional 

QAM constellation through computer search  as follows 
1 2 3 4 5 6[      ]
[-47.30  -12.50  -13.10  13.20  -12.40  -47.30 ]

opt
 (33) 

2U can be simply chosen as 
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2U U1                                     (34) 
Similar to our discussion in Section IV-A, 1s  and 2s  are 

un-correlated, therefore can be decoded independently. 

V. NUMERICAL  RESULTS

    We consider data transmission over a quasi-static 
Rayleigh flat fading channel. The channel gains are assumed 
to be known at the receiver but not at the transmitter. The 
simulation results are presented in Fig. 3 to compare the bit 
error rate (BER) of proposed codes with the current 4Gp-
QSTBC [6], 2Gp-STBC [4] and CIOD [5] with 2 bits per 
channel use (4QAM) for 8 Tx and 1 Rx antennas.  

14 14.5 15 15.5 16 16.5 17 17.5 18
10-7

10-6

10-5

10-4

10-3

SNR db

B
E

R

CIOD

4Gp-QSTBC

Proposed-4Gp

2Gp-QSTBC

Proposed-2Gp

Fig. 3.    Performance of proposed codes compared with current CIOD, 
4Gp-QSTBC and 2Gp-QSTBC, 2 bits per channel use (pcu). 

    It is shown that the proposed four-group decodable STBC 
outperforms the CIOD and 4Gp-QSTBC by 0.25 dB with the 
same number of symbols for joint decoding.  In the case of 
the two-group decodable STBCs, the proposed code also 
obtains about 0.25 dB gain compared to 2Gp-QSTBC. 
Overall, the two-group STBCs have better performance than 
four-group decodable. 

Table 1:  Diversity product of STBCs for Nt=T=8 
Number of complex 

symbols for joint decoding 
Diversity 
product  

Upper Bound 0.2500 
2Gp-QSTBC [4] 4 0.2187 

Proposed 2Gp STBC 4 0.2500 
4Gp-QSTBC [6] 2 0.1727 

CIOD[5],[11] 2 0.1747 
Proposed 4Gp STBC 2 0.2195 

    Table 1 shows the upper bound and some diversity 
products of the STBCs discussed previously with 4QAM 
signal constellation. It can be seen that the proposed schemes 
for two-group and four-group decodable STBC obtain higher 
diversity product than the existing ones. Especially, the 
proposed two-group decodable STBC is able to achieve the 
upper bound of diversity product. 
    It is stated in [11] that maximizing diversity product does 
not necessarily minimize the pairwise-error-probability 
(PEP)-bound for 8  STBCs. Considering our design by 

PEP-bound minimization criterion, we reach the following 
conclusions 

8

From Table 1, the proposed four-group decodable STBC 
has a little higher diversity product than 2Gp-QSTBC 
but no better performance. The reason is that 2Gp-
QSTBC has a lower PEP-bound. 
Designing the proposed four-group decodable STBC 
under PEP-bound minimization criterion leads to 
approximately 0.05 dB additional gain. 
When diversity product achieves its upper bound, all 
eigenvalues of HC C  should be equal, so it is easy to 
approve that the PEP-bound must be minimum in this 
case.

VI. CONCLUSIONS

We proposed an unified framework for the STBCs based 
on QSTBC and derived an upper bound of diversity product 
for this particular class of STBCs in this paper. An improved 
design of four-group and two-group decodable STBC has 
been proposed with better performance and the same 
decoding complexity in comparison to current 4Gp-QSTBC 
and 2Gp-QSTBC. We also concluded that it is necessary to 
exploit sufficient degrees of freedom, which are determined 
by the number of symbols in joint decoding, for constellation 
rotation to facilitate the search of larger diversity product.  
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