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ABSTRACT

Orthogonal space-time block codes (OSTBC) are attractive in that
they can achieve full diversity and linear complexity of maximum
likelihood (ML) decoding. However, the OSTBC have a low symbol
rate due to the limitation of the orthogonality of the code structure.
Most of the high-rate STBC achieve full diversity based on ML de-
coding at the receiver that is computationally expensive. In order
to achieve full diversity with linear receivers, recently Liu-Zhang-
Wong and Shang-Xia introduced new STBC. In this paper, we pro-
pose a simple design of STBC which have a high rate and achieve
full diversity with linear receivers. The proposed STBC are con-
structed by embedding Alamouti codes into a Toeplitz matrix. Sim-
ulation results show that in comparison with some existing codes for
a given codeword length the proposed STBC can give a better bit
error rate (BER) performance while having a high rate.

Index Terms— Full diversity, linear receivers, multiple-input
multiple-output (MIMO) systems, orthogonal space-time block
codes, zero-forcing.

1. INTRODUCTION

Multiple-input multiple-output (MIMO) systems have been under
active consideration in the last decade because of their potential for
achieving higher data rate and providing more reliable reception
performance compared with traditional single-antenna systems for
wireless communications. Space-time (ST) coding is a bandwidth-
efficient transmission technique that can improve the reliability of
data transmission in MIMO wireless systems [1, 2]. It encodes a data
stream across different transmit antennas and time slots, so that mul-
tiple redundant copies of the data stream can be transmitted through
independent fading channels. Orthogonal space-time block coding
(OSTBC) is one of the most attractive ST coding approaches because
the special structure of orthogonality guarantees a full-diversity and
a simple (linear) maximum-likelihood (ML) decoding. The first OS-
TBC design was proposed by Alamouti in [1] for two transmit anten-
nas and was then extended by Tarokh et. al. in [2] for any number of
transmit antennas. A class of OSTBC from complex design with the
code rate of 1/2 was also given by Tarokh et. al. in [2]. Later, sys-
tematic constructions of complex OSTBC of rates (k + 1)/(2k) for
Mt = 2k−1 or Mt = 2k transmit antennas for any positive integer
k were proposed in [3]. It has been found that the code rate of the
OSTBC is not more than 3/4 for more than two transmit antennas
[4].

In order to improve the code rate while achieving full diversity,
various designs of STBC have been proposed including linear dis-

persion STBC [5] and algebraic STBC [6]. However, those high-rate
STBC achieve full diversity based on ML decoding whose complex-
ity increases exponentially with the number of information symbols.
Aiming at reducing decoding complexity while obtaining full diver-
sity, Toeplitz STBC [7] and overlapped-Alamouti codes [8] were re-
cently proposed with linear receivers such as zero-forcing (ZF) or
minimum mean square error (MMSE) receivers. In this paper, we
propose a simple design of STBC which can achieve full diversity
with linear receivers and have a higher rate than that of [7]. The
proposed codes are constructed by embedding Alamouti codes in a
Toeplitz matrix.

This paper is organized as follows. A system model of space-
time transmission over MIMO channels with linear receiver is intro-
duced in Section 2. In Section 3, a simple design of full diversity
STBC with linear receiver is proposed. Its achievable symbol rate
is compared to other existing STBC and full diversity property is
shown. Simulation results are presented in Section 4. Finally, in
Section 5, we draw our conclusions.

Notations: The superscripts T and H stand for transpose and
conjugate transpose, respectively. det(A) stands for the determinant
of the matrix A.

2. SYSTEM MODEL

Consider a MIMO system with M transmit antennas and N receive
antennas transmitting the symbols {sl}, l = 1, · · · , Ns, which are
selected from a given constellation such as QAM or PSK and have
unit energy. To be transmitted from the M antennas, the Ns symbols
s = (s1, · · · , sNs)T are encoded into a space-time block codeword
matrix X(s) of size T × M , where T is the block length (coding
delay) of the codeword. The (t, m)-th entry of X(s) will be trans-
mitted to the receiver from the m-th antenna during the t-th symbol
period through flat fading channels. The received space-time signal,
denoted by the T × N matrix Y, can be written as

Y =

√
ρ

μ
X(s)H + N, (1)

where N is the noise matrix whose elements are of i.i.d. with circu-
larly symmetric complex Gaussian distribution CN (0, 1), H is the
M ×N channel matrix whose entries are also i.i.d. with distribution
CN (0, 1), ρ denotes the average signal-to-noise ratio (SNR) per re-
ceive antenna and μ is the normalization factor such that the average
energy of the coded symbols transmitting from all antennas during
one symbol period is 1.

To decode the transmitted sequence s with a linear receiver, we
need to extract s from X(s). Through some operations, we can get

2729978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009



an equivalent signal model from (1) as:

y =

√
ρ

μ
Hs + n, (2)

where y denotes a signal vector of length TN , H is a channel matrix
of size TN × Ns and n is the noise vector of length TN .

For ZF receiver, the estimate ŝZF of the transmitted symbol se-
quence s is, if (HHH)−1 exits,

ŝZF =

√
μ

ρ

(
HHH

)−1

HHy. (3)

For MMSE receiver,

ŝMMSE =

√
ρ

μ

(
INs +

ρ

μ
HHH

)−1

HHy. (4)

It was shown in [7, Theorem 1] and [8, Theorem 1] that the
STBC X(s) in (1) can achieve full diversity with ZF/MMSE re-
ceivers for QAM, PAM, and PSK signals, if HHH is nonsingular for
any nonzero H. To achieve the full diversity with linear receivers,
Toeplitz STBC and overlapped-Alamouti codes were proposed in [7]
and [8], respectively. In this paper, we propose a design of STBC that
can achieve full diversity with linear receiver and has a high rate as
well as a simple code structure.

3. A DESIGN OF STBC WITH LINEAR RECEIVERS

3.1. Code Design

Consider a length-L vector v =
[

v1 v2 · · · vL

]T
. Define

T (v, L, M) as the following T × M (T = L + M − 1) Toeplitz
matrix:

T (v, L, M) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1 0 · · · 0

v2 v1

. . .
...

... v2

. . . 0

vL

...
. . . v1

0 vL

. . . v2

... 0
. . .

...

0
...

. . . vL

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5)

In (5), the m-th column is the circular shift of the first column by
(m − 1) elements from top to bottom. In [7], Toeplitz STBC were
introduced which have the exact form of (5). For the Toeplitz STBC
X(s) = T (v, L, M), the (t, m)th entry of the code matrix is sent
from the m-th antenna during the t-th symbol period.

We define

B =
[
AT

1 AT
2 · · · AT

L

]T
, (6)

where Al denotes an Alamouti code, i.e.,

Al =

[
s2l−1 s2l

−s∗2l s∗2l−1

]
, l = 1, 2, · · · , L (7)

with si(i = 1, 2, · · · , 2L) being the information symbols which are
PSK or QAM symbols.

Our proposed design of STBC for M (even number) transmit
antennas is given by a block Toeplitz matrix as follows:

T(B, L, M) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1 0 · · · 0

A2 A1

. . .
...

... A2

. . . 0

AL

...
. . . A1

0 AL

. . . A2

... 0
. . .

...

0
...

. . . AL

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (8)

which is a (2L + M − 2) × M matrix. In fact, the block Toeplitz
matrix (8) can be seen as a code design replacing the scalars vl and
0 in (5) with matrices Al and 02×2, respectively.

For M (odd number) transmit antennas, the proposed STBC is
the first M columns of T(B, L, M + 1) where M + 1 is an even
number.

3.2. Symbol Rate

For a STBC X (s) of size T × M , symbol rate is defined as R =
Ns
T

, where Ns denotes the number of information symbols that are
encoded in X (s), i.e., s = (s1, s2, · · · , sNs). The block length
(coding delay) of the STBC X (s) is denoted by T , which is the
number of channel uses to transmit a codeword.

For Toeplitz STBC T (v, L, M) in (5) proposed by [7], the block
length is L+M − 1 and L information symbols are encoded. Then,
the symbol rate of T (v, L, M) is:

RT (v,L,M) = 1 − M − 1

T
. (9)

For our proposed STBC T(B, L, M) in (8), the block length is
2L + M − 2 and 2L information symbols are encoded. Then, the
symbol rate of T(B, L, M) is (even M ):

RT(B,L,M) = 1 − M − 2

T
. (10)

For odd M , the symbol rate of our proposed STBC is the same as that
for M + 1 (even). Then, the symbol rate is 1 − M−1

T
. In summary,

RT(B,L,M) =

{
2L

2L+M−2
= 1 − M−2

T
, M even

2L
2L+(M+1)−2

= 1 − M−1
T

, M odd
(11)

Note that the rate shown above approaches 1 when the space-time
codeword length T is sufficiently large.

For a given block length T and even M , the symbol rate com-
parison between T(B, L, M) and T (v, L, M) is:

RT(B,L,M)

RT (v,L,M)

=
1 − M−2

T

1 − M−1
T

= 1 +
1

T − M + 1
. (12)

Considering T ≥ M for any STBC, we can see that our proposed
STBC T(B, L, M) always achieves a higher rate than the Toeplitz
STBC in [7] for even M and the rate advantage diminishes when T
goes to infinity.

For another recently proposed STBC, namely overlapped-
Alamouti code OM,L in [8], the symbol rate is

ROM,L =

{ L
L+M−2

= 1 − M−2
T

, L & M even
L

L+M−1
= 1 − M−1

T
, otherwise

(13)
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Given the same block length T , our proposed STBC T(B, L, M)
achieves the same rate as the overlapped-Alamouti code but has a
simple code structure.

3.3. Full Diversity Property with Linear Receivers

It was shown in [7, Theorem 1] and [8, Theorem 1] that the STBC
X(s) in (1) can achieve full diversity with ZF/MMSE receivers for
QAM, PAM, and PSK signals, if HHH (for H in (2)) is nonsingular
for any nonzero H. In the following, we prove that HHH is nonsin-
gular for the proposed space-time codeword T(B, L, M) in (8).

We first consider transmission of the data sequence s =
(s1, · · · , sNs)T via ST coding in (8) over MISO channels. From
(1), the received signals can be written as:

Y =

√
ρ

μ
T(B, L, M)h + N, (14)

where h = [ h1 h2 · · · hM ]T with hm(m = 1, 2, · · · , M)
denoting the channel coefficient of the link from the m-th transmit
antenna to the single antenna receiver.

For all elements in the even rows of Y in (14), we take the neg-
ative conjugate. Then, we can obtain

y =

√
ρ

μ
T(G,

M

2
, Ns)s + n, (15)

where T(G, M
2

, Ns) is a channel matrix of size T ×Ns and has the
same form of (8) but replacing B in (8) by G:

G =
[

GT
1 GT

2 · · · GT
M
2

]T

, (16)

where

Gk =

[
h2k−1 h2k

−h∗
2k h∗

2k−1

]
(17)

for k = 1, · · · , M/2.

Comparing (2) with (15), we get

H = T(G,
M

2
, Ns)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G1 0 · · · 0

G2 G1

. . .
...

... G2

. . . 0
...

...
. . . G1

−− −− −− −−
...

...
. . . G2

GM
2

...
...

...

0 GM
2

. . .
...

... 0
. . .

...

0
...

. . . GM
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

⎡
⎣ D1

−−
D2

⎤
⎦ . (18)

Note that D1 is a lower block triangular matrix having matrix G1 on
the diagonal. Because HHH = DH

1 D1 +DH
2 D2. For any nonzero

h, we assume that G1 �= 0. Then,

det
(
HHH

)
≥ det(DH

1 D1) + det(DH
2 D2)

≥ det(DH
1 D1)

=
[
det(GH

1 G1)
]Ns/2

= (|h1|2 + |h2|2)Ns/2 > 0. (19)

For any nonzero h, if G1 = 0 we then find the smallest index p for
Gp such that Gp �= 0. Following the similar proof in (19), we can
get det

(
HHH

)
> 0. Therefore, for any nonzero H in MISO, our

proposed codes in (8) can achieve full diversity with linear receivers.
It can also be proved that the full diversity is obtained for linear
receivers in MIMO case.

3.4. Code Examples

3.4.1. M = 4, T = 10

T(B, 4, 4) =

⎡
⎢⎢⎢⎣

A1 0
A2 A1

A3 A2

A4 A3

0 A4

⎤
⎥⎥⎥⎦ .

The normalization factor μ for the above code is μ = 32
10

and the

symbol rate is 8
10

. The received signals of MISO systems are Y =√
ρ

32/10
T(B, 4, 4)H + N. Equivalently,

y =

√
ρ

32/10
Hs + n, (20)

where s = (s1, · · · , s8)
T ,

H =

⎡
⎢⎢⎢⎣

G1 0 0 0
G2 G1 0 0
0 G2 G1 0
0 0 G2 G1

0 0 0 G2

⎤
⎥⎥⎥⎦ , (21)

and G1 and G2 are given by (17).

Under the same scenario, the symbol rate of the Toeplitz STBC
is 7

10
.

3.4.2. M = 5, T = 10

Because our code design for odd M transmit antennas is based on
the code design for M + 1 (even) transmit antennas, we first design
a code for M + 1 = 6 and T = 10 as follows,

T(B, 3, 6) =

⎡
⎢⎢⎢⎣

A1 0 0
A2 A1 0
A3 A2 A1

0 A3 A2

0 0 A3

⎤
⎥⎥⎥⎦ .

Then, the code design for M = 5 and T = 10, i.e., T(B, 3, 5) is
given by the first M columns of the code T(B, 3, 6). The normal-
ization factor μ for the code T(B, 3, 5) is μ = 30

10
and the sym-

bol rate is 6
10

. Note that the normalization factor μ for the code
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Fig. 1. Comparison of BER performance for Toeplitz codes and the
proposed codes in a MISO 4 × 1 system with with ZF receivers and
QPSK. The codes have the same block length T = 10.

T(B, 3, 6) is μ = 36
10

. The received signals of MISO systems are

Y =
√

ρ
30/10

T(B, 3, 5)H + N. Equivalently,

y =

√
ρ

30/10
Hs + n, (22)

where s = (s1, · · · , s6)
T ,

H =

⎡
⎢⎢⎢⎣

G1 0 0
G2 G1 0
G3 G2 G1

0 G3 G2

0 0 G3

⎤
⎥⎥⎥⎦ , (23)

and Gk (k = 1, 2, 3) is given by (17) and h6 = 0 in G3.
Under the same scenario, the symbol rate of the Toeplitz STBC

is also 6
10

.

4. SIMULATION RESULTS

To show the performance comparison between our proposed STBC
and the Toeplitz STBC in [7], we present simulation results of the
two codes in a MISO system with M transmit antennas over flat
Rayleigh fading channels. QPSK and ZF receiver are adopted. When
the block length (i.e., coding delay) is 10 and M = 4, the symbol
rates for the proposed STBC and the Toeplitz STBC are 8

10
and 7

10
,

respectively. When T = 10 and M = 5, the symbol rates for the
two codes are both 6

10
.

Fig. 1 shows the bit error rate (BER) performances of the pro-
posed STBC and the Toeplitz STBC for 4 transmit antennas. It is
clear to see that our proposed STBC outperform the Toeplitz STBC.
It should be emphasized that our proposed STBC for M = 4 has a
slightly higher rate (0.1 in symbol rate advantage) than the Toeplitz
STBC. It is expected that if we keep the same transmission effi-
ciency, the BER performance advantage of our STBC is increased.
Fig. 2 shows the BER performances of the two codes for 5 transmit
antennas. It clearly demonstrates that the proposed STBC is superior
to the Toeplitz STBC while achieving the same rate of 6

10
.
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Fig. 2. Comparison of BER performance for Toeplitz codes and the
proposed codes in a MISO 5 × 1 system with with ZF receivers and
QPSK. The codes have the same block length T = 10.

5. CONCLUSIONS

A simple design of high-rate STBC that can achieve full diversity
with linear receivers was proposed. The proposed STBC were con-
structed by embedding Alamouti codes into a Toeplitz matrix. Sim-
ulation results demonstrated a better BER performance of the pro-
posed codes while having a slightly higher rate than the Toeplitz
codes given the identical block length (coding delay).
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