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ABSTRACT
Perfect space-time block codes (STBCs) were first introduced

by Oggier et al. to have full rate, full diversity and non-vanishing

determinant. A maximum likelihood decoder based on the

sphere decoder has been used for efficient decoding of perfect

STBCs. However the worst-case complexity for the sphere

decoder is an exhaustive search. In this paper we present a

reduced complexity algorithm for 3 × 3 perfect STBC which

gives essentially maximum likelihood (ML) performance and

which can be extended to other perfect STBC. The algorithm

is based on the conditional maximization of the likelihood

function with respect to one of the set of signal points given

another. There are a number of choices for which signal

points to condition on and the underlying structure of the code

guarantees that one of the choices is good with high proba-

bility. Furthermore, the approach can be integrated with the

sphere decoding algorithm with worst case complexity corre-

sponding exactly to that of our algorithm.

Index Terms— Perfect space-time codes, fast maximum

likelihood decoding, sphere decoding,

1. INTRODUCTION

The STBC discovered by Alamouti [1] which uses two trans-

mit antennas facilitates high data rate, reliability and low com-

plexity ML decoding. Orthogonal STBCs (OSTBC) [2] were

designed to use more than two transmit antennas. However, as

the number of transmit antennas increases, the rate becomes

less attractive. Oggier et al.[3] introduced perfect space-time

block codes which satisfy all of the following criteria: full-

rate, full-diversity, non-vanishing determinant, good shaping

and uniform average transmitted energy per antenna. These

codes are constructed for 2×2, 3×3, 4×4 and 6×6 multiple-

input multiple-output (MIMO) systems. An example of a 2×2
perfect STBC is the Golden code [4] which has been incor-

porated into the 802.16e standard. The conventional ML de-

coder for perfect STBCs with an N -QAM or N -HEX constel-

lation is based on an implementation of sphere decoding. In
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the case of Golden code, it has been widely reported that the

worst case decoding complexity grows with the fourth power

of the signal constellation size [5, 6]. Although, there is no

report on the decoding complexity for other perfect codes, it

is expected that when the channel matrix is close to singular,

the preprocessing stage of the sphere decoding algorithm will

yield a plane of possibilities rather than a single initial esti-

mate. When this occurs, lattice point search degenerates to an

exhaustive search.

In this paper we describe a fast decoding algorithm for

perfect STBCs which give essentially ML performance with

reduced complexity. The algorithm is based on the condi-

tional maximum likelihood which is a technique widely used

in statistical estimation and signal processing. The approach

has been applied to the Golden code to obtain essentially ML

performance with complexity O(N2) [7]. Here we show that

the 3×3 perfect STBC can be decoded with complexity O(N6)
to obtain essentially ML performance. Our approach can be

applied to other perfect STBC to obtain low complexity de-

coding with essentially ML performance. Moreover, the ap-

proach can be integrated naturally with sphere decoding in a

simple way leading to a sphere decoder with worst case com-

plexity corresponding exactly to that of our algorithm.

2. PERFECT SPACE-TIME BLOCK CODES

In this section we give the codeword matrices of the perfect

STBCs for 3 × 3, 4 × 4 MIMO systems in a form that will

assist in the development of our algorithm.

2.1. 3 × 3 Perfect space-time block code

The perfect 3×3 STBC transmits nine complex (usually N−HEX
constellation) information symbols {xi}9

i=1 over three time
slots from three transmit antennas. The transmit codewords
of the 3 × 3 perfect STBC can be expressed as

X=B1

0
@

x1 x2 x3

jx3 x1 x2

jx2 jx3 x1

1
A+ B2

0
@

x4 x5 x6

jx6 x4 x5

jx5 jx6 x4

1
A+ B3

0
@

x7 x8 x9

jx9 x7 x8

jx8 jx9 x7

1
A

(1)
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where the diagonal matrices Bi are

B1 = (1 + j)I3 + Θ

B2 = (−1− 2j)I3 + jΘ2

B3 = (−1− 2j)I3 + (1 + j)Θ + (1 + j)Θ2
(2)

with Θ = diag(θ1, θ2, θ3), θi = 2 cos(2iπ/7), j = e2πi/3

and In is the n × n identity matrix.

2.2. 4 × 4 Perfect space-time block code

The 4×4 perfect STBC transmits 16 complex (N−QAM con-
stellation) information symbols {xi}16

i=1 over four time slots
from four antennas. The codewords can be expressed as

X=B1

0
BB@

x1 x2 x3 x4

ix4 x1 x2 x3

ix3 ix4 x1 x2

ix2 ix3 ix4 x1

1
CCA+B2

0
BB@

x5 x6 x7 x8

ix8 x5 x6 x7

ix7 ix8 x5 x6

ix6 ix7 ix8 x5

1
CCA (3)

+B3

0
BB@

x9 x10 x11 x12

ix12 x9 x10 x11

ix11 ix12 x9 x10

ix10 ix11 ix12 x9

1
CCA+B4

0
BB@

x13 x14 x15 x16

ix16 x13 x14 x15

ix15 ix16 x13 x14

ix14 ix15 ix16 x13

1
CCA

where

B1 = (1− 3i)I4 + iΘ2

B2 = (1− 3i)Θ + iΘ3

B3 = −iI4 + (−3 + 4i)Θ + (1− i)Θ3

B4 = (−1 + i)I4 − 3Θ + Θ2 + Θ3
(4)

with Θ = diag(θ1, θ2, θ3, θ4), θi = 2 cos(2iπ/15).

3. FAST DECODING FOR THE 3 × 3 PERFECT
STBC

In this section we show that fast decoding with reduced com-

plexity and essentially ML performance can be achieved with

a simple algorithm. We demonstrate this with the 3×3 perfect

STBC which give the decoding complexity of O(N6), where

N is the size of underlying HEX constellation. The approach

is an extension of the ideas used to derive the fast optimal al-

gorithm for multiplexing orthogonal design developed in [8],

and applied to Golden code to obtain a fast essentially ML

performance decoder [7].

Assume that the channel state information is available at

the receiver. Let hij be the channel gain from transmit an-

tenna i to a receive antenna j, the received signal is given by

r = HX + n (5)

where

H =

⎛
⎝h11 h21 h31

h12 h22 h32

h13 h23 h33

⎞
⎠ .

Equation (5) can be rewritten as

r = (x1, x2, x3)H1 + (x4, x5, x6)H2 + (x7, x8, x9)H3 + n
(6)

wherer = (r1, r2, r3) contains the three received signal vec-
tors ri = (ri1, ri2, ri3) with the component rij representing
the received signal at antenna i in time slot j. The noise n is
i.i.d Gausian noise with zero mean and covariance 2σ2I3 and

H1 = (H1,G1,C1),H2 = (H2,G2,C2),H3 = (H3,G3,C3),

where Hi,Gi and Ci are induced channel matrices from the

three transmit antennas to the first, second and the third re-

ceive antenna respectively. Explicitly

Hi=

⎛
⎝ bi1h11 bi2h21 bi3h31

jbi3h31 bi1h11 bi2h21

jbi2h21 jbi3h31 bi1h11

⎞
⎠ , (7)

and similary for Gi and Ci. The induced channel matrices

H1,H2,H3 have the following property which is the basis of

our fast decoding algorithm

H1H†
1 + H2H†

2 + H3H†
3 = 7‖H‖2

F I3. (8)

That is
∑K

i=1 HiH†
i is a multiple of identity. A similar prop-

erty of the induced channel matrices holds for all of the per-

fect STBCs, including the Golden code. In fact, our fast de-

coding method will apply to any STBC with structure giving

rise to a relation of the form (8).

Let s = (x1, x2, x3), c = (x4, x5, x6),y = (x7, x8, x9),
we can rewrite (6) as

r = sH1 + cH2 + yH3 + n. (9)

The likelihood function associated with (9) is

p(r|s, c,y, ) ∝ exp
(
− 1

2σ2
‖r − sH1 − cH2 − yH3‖2

)
.

(10)

Based on the conditional optimization described in [8], we

first maximize (10) with respect to c and y given s.

p(r|s, c, y) ∝ exp
(
− 1

2σ2
r′(I9 −H†

1(H1H†
1)

−1H1)r′†
)

× exp
(
− 1

2σ2
(s − s̃(c, y))H1H†

1(s − s̃(c,y))
)

where r′ = r − cH2 − yH3, and

s̃(c, y) = (r − cH2 − yH3)H†
1(H1H†

1)
−1 (11)

We now make what is essentially a zero forcing approxima-

tion, since H1H†
1 is not generally a multiple of the identity.

We take

ŝ(c, y) = Q(s̃(c, y)) (12)

≡ (Q(x̃1(c, y)), Q(x̃2(c,y)), Q(x̃3(c,y)))
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where Q is the quantizer for the HEX constellation.

Substituting (12) into (10) we thus estimate s, c and y as

follows:

(ĉ, ŷ) = arg min
c,y∈C

‖r − ŝ(c,y)H1 − cH2 − yH3‖2, (13)

ŝ = Q(s̃(ĉ, ŷ))

where s̃(c,y) is given in (11).

If we first maximize (10) with respect to s and y given c
we obtain the estimate

(ŝ, ŷ) = arg min
s,y∈C

‖r − sH1 − ĉ(s,y) − yH3‖2, (14)

ĉ = Q(c̃(ŝ, ŷ))

where

c̃(s,y) = (r − sH1 − yH3)H†
2(H2H†

2)
−1 (15)

Alternatively, if we maximize (10) with respect to s and c
given y we obtain

(ŝ, ĉ) = arg min
s,c∈C

‖r − sH1 − cH2 − ŷ(s, c)H3‖2, (16)

ŷ = Q(ỹ(ŝ, ĉ))

where

ỹ(s, c) = (r − sH1 − cH2)H†
3(H3H†

3)
−1 (17)

Equations (13), (14) and (16) each provide an algorithm for

obtaining the estimate of xi, i = 1, . . . , 9, each of which in-

volves at most N6 evaluations of the right hand side of one

of (13), (14) and (16). Now, we have three possible decod-

ing solutions (13), (14) and (16). Of course if H1H†
1,H2H†

2

and H3H†
3 were multiples of identity matrix, all of the op-

timizations (13), (14) and (16) would be exact ML and we

would not need to make a choice. However, as we are mak-

ing a zero forcing approximation, we need to choose the best

alternative for each channel. One approach is to compute all

three alternatives and take the alternative which maximizes

the likelihood. The key to the current algorithm is that due to

the structure of the code one of the three estimates is good,

i.e., essentially ML, with very high probability.

The accuracy of the quantization depends on both the de-

terminant (which determines signal to noise ratio) and condi-

tion number (which determines the accuracy of the zero forc-

ing approximation) of H1H†
1,H2H†

2 or H3H†
3. Fig.1 shows

the distribution of min(γ1, γ2, γ3) where γ1, γ2, γ3 represent

the condition numbers. This shows that although the condi-

tion numbers can individually be large, the minimum of the

three has a very high probability of being small.

We can reduce the computation by a factor of three by de-

ciding on one of the three estimates based on the channel. A

possible criterion is to choose to quantize the variables cor-

responding to the Hj with the largest value of det(HjH†
j).
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Fig. 1. Empirical distribution of min(γ1, γ2, γ3) for iid Gaus-

sian channel coefficients.

Another choice is to quantize the variable for which the cor-

reaponding matrix HjH†
j has the smallest condition number.

For the Golden code these two criteria are equivalent, but here

they are not. We have found experimentally that former crite-

rion is just slightly better and obviates the need to compute all

three estimates. The algorithm can be summarized as follows:

Let det(H) = max[det(H1H†
1), det(H2H†

2), det(H3H†
3)],

If det(H1H†
1) = det(H)

(ĉ, ŷ) = arg min
c,y∈C

‖r − ŝ(c,y)H1 − cH2 − yH3‖2

ŝ = Q(s̃(ĉ, ŷ))

elseif det(H2H†
2) = det(H)

(ŝ, ŷ) = arg min
s,y∈C

‖r − sH1 − ĉ(s, y)H2 − yH3‖2

ĉ = Q(c̃(ŝ, ŷ))

otherwise

(ŝ, ĉ) = arg min
s,c∈C

‖r − sH1 − cH2 − ŷ(s, c)H3‖2

ŷ = Q(ỹ(ŝ, ĉ))

where s̃, c̃ and ỹ are given in (11), (15) and (17)

respectively.

The perfect STBC are constructed in terms of informa-

tion symbols either a QAM or HEX constellation. This means

that the computational complexity of the quantization step is

O(1). Therefore our algorithm involves at most N6 evalua-

tions of likelihood function.

We compare the performance of the fast decoding algo-

rithm described above with the ML decoder. The simulation
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was made for a Rayleigh fading channel model using 3 × 3
perfect STBC. Fig.2 shows the symbol error rate as a function

of SNR using 4-HEX constellation. The result shows that

our fast decoder is essentially ML decoder with complexity

O(N6).

4. RELATIONSHIP TO SPHERE DECODING

The perfect STBC can be decoded with sphere decoder [3],

but these suffer from the draw back that when the channel ma-

trix is close to singular, the preprocessing stage of the sphere

decoding algorithm yields a plane of possibilities rather than

a single initial estimate. When this occurs, lattice point search

degenerates to an exhuastive search with an overall complex-

ity of order O(N9) (this becomes O(N16) for 4× 4 MIMO).

In wireless communication, when the channel between base

station and terminal is line of sight, the induced channel ma-

trix is rank 1. The decoder has to be fabricated to handle worst

case channel.

Having said that, our approach is, in fact, compatible with

sphere decoding. The method of conditional maximization

can be integrated with sphere decoding in a simple way lead-

ing to a sphere decoding algorithm with worst case complex-

ity corresponding exactly to that of our algorithm. To see this,

suppose we have determined that we only need to search sym-

bols within the region S ⊂ C
K , defined by the equation

S : xx† < ρ, ρ > 0. (18)

Having decided on a sphere the reduced decoding problem

becomes

x̂ = arg max
x∈CK∩S

p(r|x). (19)

Now consider the decoding problem

r = xH + n = x1H1 + x2H2 + n (20)

where we split the code vector x into two parts, x1 contains

m symbols associated with m rows of H and x2 contains

K −m symbols associated with the K −m rows of H. Let x
be a general vector in C

K and define U2 : C
K → C

K−m by

xU2 = x2 (21)

so that Π2 = U2U
†
2 is the orthogonal projector on the “x2”

subspace. Similary, we can define an orthogonal projection

Π1 = U1U
†
1 onto the “x1” subspace. If x ∈ S, then x2

contained in the region

SΠ2 : x2x
†
2 < ρ. (22)

The optimization problem for x2 then reduces to

x̂2 = arg min
x2∈CK−m∩SΠ2

‖r − x̂1(x2)H1 − x2H2‖2 (23)

Hence the worst case complexity will be bound to O(NK−m).
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Fig. 2. Performance comparison between the low complexity

decoder and the ML decoder
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