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ABSTRACT

In this paper we consider the vector perturbation (VP) precoding

scheme for the multiuser MISO broadcast channel proposed by

Hochwald et al. under the practical assumption that the receivers

have limited dynamic range. In this case, VP precoding is shown to

suffer from an error floor at high signal-to-noise ratio (SNR). As an

alternative, we propose precoding with restricted VP (RVP), which

takes the limited dynamic range of the receivers explicitly into ac-

count by restricting to a finite set of possible perturbation vectors

at the transmitter side. We derive the diversity order of this RVP

scheme and show that no error floor occurs and that the performance

is superior to VP for the entire range of SNRs.

Index Terms— Multiuser MIMO systems, vector perturbation

precoding, diversity order, dynamic range.

1. INTRODUCTION

We consider a wireless broadcast scenario in which a base station

uses multiple antennas to transmit simultaneously to multiple users.

In this context, precoding based on vector perturbation (VP) [1–3]

is a promising technique since it enables the users to perform low-

complexity optimal detection in a non-cooperative manner. This is

accomplished by performing channel inversion at the base station,

preceded by a perturbation of the transmit vector in order to re-

duce the transmit power [2]. The receivers detect their data symbols

by scaling their receive signal, followed by a modulo operation and

scalar symbol detection. Throughout the paper, we will refer to this

scheme as conventional VP precoding.

An inherent problem with conventional VP precoding, which

has not been considered in detail previously, is the large (or even un-

bounded) dynamic range of the signals at the detector input. A sim-

ilar problem is well known in the context of Tomlinson-Harashima

precoding for time-dispersive channels [4]. The large dynamic range

of the receive signal represents a serious problem for implementa-

tions in fixed point arithmetic. This motivates us to consider ways of

limiting the dynamic range at the receiver. Our contributions in this

paper are as follows:

• We show that conventional VP with a limited dynamic range at the

receivers has an error floor in general.

• We propose a precoding scheme based on a finite set of possible

perturbation vectors (referred to as restricted vector perturbation

(RVP)) to take the limited dynamic range of the receivers into ac-

count.
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within the Sixth Framework Programme of the European Commission.

• We derive the diversity order of the RVP scheme which, although

being significantly lower than for unrestricted perturbations, is

strictly positive and thus avoids the error floor.

• We show numerical results to support our theoretical findings and

we illustrate that the performance loss of RVP as compared to con-

ventional VP (with unlimited dynamic range) can be very small in

the relevant SNR-regime.

The paper is organized as follows. Section 2 presents the system

model and conventional VP precoding. The impact of receive-side

clipping on the performance is analyzed in Section 3. In Section 4,

we propose RVP precoding and determine its diversity order. Sim-

ulation results and conclusions are presented in Sections 5 and 6,

respectively.

2. BACKGROUND

2.1. System Model

We consider a multi-user communications system operating in the

downlink (see e.g. [1, 3]). The base station is equipped with M
transmit antennas and there are K users, each with a single receive

antenna. We assume that 2 ≤ K ≤ M and that there is no user

cooperation.

Let x � (x1 . . . xM)T denote the length-M transmit vec-

tor. We assume mutually independent, spatially uncorrelated

Rayleigh flat fading MISO channels hk , k = 1, . . . , K, i.e.,

hk ∼ CN (0, M−1I). The kth user receives yk = hT

k x + wk

where the additive noise wk is assumed circularly symmetric com-

plex Gaussian with unit variance. By collecting the receive values

of all K users in a receive vector y � (y1 . . . yK)T, the overall

channel input-output relation can be written as

y = Hx + w, where H=
`
h1 . . .hK

´T
(1)

and w � (w1 . . . wK)T. We assume that the transmit signals are

subject to an instantaneous peak power constraint given by

‖x‖2 ≤ P . (2)

Note that the type of power constraint strongly affects precoding per-

formance [5].

2.2. VP Precoding

Transmitter Processing. The base station transmits K (indepen-

dent) complex symbols sk ∈ A simultaneously to the K users,

where A denotes the symbol alphabet. We assume that 0 �∈ A. Let
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s � (s1 . . . sK)T denote the data vector obtained by collecting all

symbols. With conventional VP precoding [2], the transmit vector is

obtained as

x =

s
P

Γ(z)
H

†(s + τz). (3)

Here, H† = HH(HHH)−1 denotes the right pseudo inverse, τ is

a fixed real-valued scaling factor, and z � (z1 . . . zK)T ∈ G
K is

a perturbation vector whose elements are Gaussian integers1. The

power scaling factor Γ(z) is chosen such that the instantaneous

power constraint (2) is satisfied with equality, i.e.

Γ(z) � ‖H†(s + τz)‖2 . (4)

The specific choice of z will be described later.

Receiver Processing. The kth receiver normalizes the signal power

according to

rk �

r
Γ(z)

P
yk

Combining (1) and (3) results in

rk = sk + τzk + vk, (5)

where vk = wk

p
Γ(z)/P is white Gaussian noise with variance

Γ(z)/P . The effective data symbols sk+τzk belong to the extended

alphabet A + τ G (i.e. all τ -scaled integer translates of A). If τ
is selected properly (cf. [2]), each user can perform detection by

applying a complex-valued modulo-τ operation followed by scalar

quantization with respect to the symbol alphabet A, i.e.,

ŝk = Q{Mτ{rk}} , (6)

where Mτ{·} denotes the modulo operation and Q{·} denotes the

quantization. Since the noise vk of different users is uncorrelated,

this detection is also optimal with respect to the overall probability

of error Pr{E} = Pr{s �= ŝ}, where ŝ � (ŝ1 . . . ŝk)T. The detector

(6) has very low complexity, which is one of the major advantages

of VP precoding.

Optimum Perturbation Vector. In order to minimize the error

probability of the detector (6), the SNR in (5) has to be maxi-

mized. This amounts to minimizing the noise variance, which

equals Γ(z)/P . Thus, [2] proposed to choose the optimal perturba-

tion vector z such that Γ(z) in (4) is minimized:

z
� = arg min

z∈GK

‚‚H†(s + τz)
‚‚2

. (7)

We will write in the following Γ = Γ(z�). Since the minimization

in (7) is over all Gaussian integers, |z�

k| can become arbitrarily large.

This happens particularly for channel realizations with large condi-

tion number since here the “right” direction of s + τz� relative to

the eigenvectors of H† is much more important than its length in

order for Γ to be small. Large values of |z�

k| in turn result in a large

dynamic range of rk in (5).

The minimization problem in (7) is an integer least-squares

problem whose complexity in general grows exponentially with the

number of users K. A promising method to solve (7) is the sphere

decoding algorithm [6] (in this context also referred to as sphere

encoding [2]), which, however, is still exponentially complex [7]

(both in the worst case and on average).

1The set of Gaussian integers G = Z + jZ comprises all complex num-
bers with integer real and imaginary parts.

3. RECEIVERS WITH LIMITED DYNAMIC RANGE

Receiver Model. To model practical receivers where amplifiers,

A/D converters, etc. result in limited dynamic range, we let the de-

tector observe a clipped version of rk in (5), denoted r̃k. The symbol

decisions are thus obtained according to (6) but with rk replaced by

r̃k. We assume that the real and imaginary parts of rk are clipped

separately, i.e., r̃k = g
`
Re{rk}) + jg

`
Im{rk}) where

g(r) =

(
κ σ(r) , |r| > κ ,

r , |r| ≤ κ ,

with σ(·) and κ ≥ τ/2 denoting the sign function and the clipping

threshold, respectively. If the threshold is chosen according to κ =
(2i+1)τ/2, i ∈ {0, 1, . . . }, the clipping does not cut through a

periodic repetition of the symbol constellation, thereby avoiding that

certain transmit symbols are penalized. We note that clipping may

occur both as a consequence of a particularly large perturbation z�

k

as well as a large noise realization vk . However, the probability of

the former will typically outweigh the latter.

Impact on Performance. In this section, we discuss the impact of

clipping/limited dynamic range on the performance of conventional

VP precoding. Specifically, we establish that for any finite κ there

is an error floor, i.e., the error probability of the detector has a lower

bound that is independent of the SNR. To establish the existence

of an error floor, it is sufficient to show that the error probability

is bounded away from zero even in the noiseless case. In order to

simplify the analysis we restrict attention to 16-QAM or higher con-

stellations since here for any κ there exists a symbol a ∈ A such

that an error is guaranteed if a is transmitted and clipping occurs at

the receiver. A sufficient condition for clipping is thus given by

|sk + τz�

k| >
√

2 κ (8)

and it follows that

Pr{E} ≥ Pr{|sk + τz�

k| >
√

2κ | sk =a}Pr{sk =a} , (9)

where E denotes the overall error probability. Since Pr{sk =a} > 0
it follows that a sufficient condition for an error floor to occur is

given by

Pr{|sk + τz�

k| >
√

2κ | sk = a} > 0 . (10)

Although (10) may be established directly, it also follows as a con-

sequence of the discussion in Section 4, and we shall leave the proof

for then. In essence, we conclude that the occasional use of large

perturbations will lead to an error floor given that the signals in the

receiver are subject to a limited dynamic range.

We note that the existence of an error floor may also be estab-

lished for other constellations, although in this case one must take

the direction (in addition to the magnitude) of the perturbation into

account. While this is feasible, it is substantially more tedious and

we omit the proof due to lack of space.

4. RVP PRECODING

In this section, we propose a modification of (7), termed restricted

vector perturbation (RVP), which avoids the error floor described in

the previous section. Furthermore, we derive the diversity order of

RVP precoding with receivers having limited dynamic range.

The main idea is to limit the dynamic range of the receive signals

via transmitter processing. Specifically, we propose to use a finite set
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Fig. 1. BER versus SNR for conventional VP precoding for infinite dynamic range (labeled ‘VP’) and for finite dynamic range (‘clipped

VP’), ZF precoding (no perturbation), and RVP for M = K = 2 (left-hand side) and M = K = 6 (right-hand side).

ZK ⊂ G
K of perturbation vectors at the transmit side (cf. (7)):

z̃
� = arg min

z∈ZK

‚‚H†(s + τz)
‚‚2

. (11)

We note that (11) can again be solved efficiently using the sphere

encoder. Here, the finiteness of ZK can potentially be exploited to

reduce its complexity as compared to its application for solving the

infinite lattice case associated with conventional VP (7). The set Z
is chosen such that |Re{zk}| ≤ (κ − |Re{sk}|)/τ and |Im{zk}| ≤
(κ − |Im{sk}|)/τ for all zk ∈ Z and all sk ∈ A. This implies that

no clipping occurs in the noise-free case and hence the probability

for rk to be clipped vanishes asymptotically with increasing SNR.

Consequently, RVP according to (11) avoids an error floor. However,

the finite perturbation set may result in a somewhat larger power

scaling factor, given by

Γ̃ � min
z∈ZK

‖H†(s + τz)‖2 .

Since the receiver noise variance equals Γ̃/P , the effective SNR of

RVP is reduced. This effect will be the more pronounced the smaller

the cardinality of Z. We will next make these observations precise

by studying the diversity order of RVP, defined as

d � − lim
P→∞

log Pr{E}
log P

. (12)

Our main result is stated in the following theorem, whose proof is

provided in the Appendix.

Theorem 1 For receivers with limited receiver dynamic range κ (ar-

bitrary but fixed), RVP precoding according to (3) and (11) under an

instantaneous power constraint (2) achieves a diversity order of

dRVP = M−K+1 .

Discussion. First of all, the theorem shows that RVP does not suffer

from an error floor. However, the diversity order achieved by RVP

is the same as the one obtained with zero-forcing (ZF) precoding

(i.e., channel inversion without perturbation). In fact, ZF precoding

is a special case of RVP obtained with Z = {0}. It is important to

note, though, that in spite of identical diversity there may still be an

SNR gap between RVP and ZF precoding. Indeed, our simulations

indicate that RVP can perform close to optimum precoding (i.e., con-

ventional VP without dynamic range limitation) over a wide range

of SNRs before the small diversity order kicks in.

We are now also in the position to argue that (10) indeed holds

true. According to [5], the optimum precoder achieves diversity or-

der M . Since the theorem states that dRVP < M for arbitrary κ
(remember that we assumed K ≥ 2), it follows that optimum pre-

coding requires an infinitely large perturbation set, or equivalently

that the optimum precoder occasionally uses arbitrarily large pertur-

bations, thereby verifying (10). Also, a large dynamic range is a con-

sequence of attempting to approach optimal performance in terms of

error probability.

5. SIMULATION RESULTS

We next present numerical results to assess the performance of con-

ventional VP precoding with clipping and of RVP precoding. In all

simulations, a 16-QAM symbol alphabet is used. Figure 1 shows bit

error rate (BER) versus nominal SNR P achieved by various pre-

coders for two systems of dimension M = K = 2 (on the left) and

M =K =6 (on the right). In both cases, dRVP = 1.

Conventional VP precoding with infinite dynamic range (labeled

’VP’) is shown as the ultimate benchmark that cannot be achieved

with limited dynamic range. ZF precoding (labeled ‘ZF’) is depicted

as an extreme case of VP precoding with no perturbation (z = 0).

The other curves correspond to finite dynamic range and show con-

ventional VP with clipping (’clipped VP’) and RVP. The clipping

level was chosen as 3τ/2, which allows RVP to use perturbations

satisfying |Re{zk}|≤1 and |Im{zk}|≤1. This entails perturbation

sets of size 81 (K =2) and 531 441 (K =6).

The error floor of clipped VP is clearly seen for both systems.

The much larger number of degrees of freedom in the system with

K = 6, however, entails a significantly lower error floor than with

K = 2. Furthermore, RVP outperforms conventional VP precoding

with clipping. For K = 2, the diversity dRVP = 1 can be read in

the plot, whereas for K = 6 the high-SNR regime cannot be seen

since it kicks in only for much larger (practically irrelevant) P . In

the latter case, RVP performs within 0.5 dB of the VP precoding with

infinite dynamic range over the whole BER range shown. This can

be attributed to the fact that the perturbation set is large even though

κ is small. In contrast, the gap between RVP and VP precoding

with infinite dynamic range is noticeable larger for K =2. This gap

could be further reduced, however, by increasing the dynamic range

and the size of the perturbation set.
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6. CONCLUSION

We showed that in case of receivers with limited dynamic range, con-

ventional vector perturbation (VP) precoding suffers from an error

floor. Hence, we proposed restricted VP (RVP) as an alternative that

uses a finite set of perturbation vectors. RVP avoids the error floor

but achieves a diversity order that is strictly less than that of the con-

ventional VP with infinite dynamic range. However, our simulations

indicated that the diversity loss is effective only at high SNRs, i.e.,

there is no significant performance gap for a wide range of SNRs,

particularly for large system size.

While in this paper we restricted to perfect channel state infor-

mation (CSI), our results can be generalized to the case of imperfect

CSI (see [5]). Furthermore, our analysis also applies to the recently

introduced transmit outage precoding scheme [8].

APPENDIX: PROOF OF THEOREM 1

By construction, detection errors in RVP occur only in the case of

strong noise vk. Since the variance of vk equals Γ̃/P , errors are

likely to occur whenever Γ̃ ≥ P . If Γ̃ ≤ P 1−ε (for arbitrarily

small ε > 0) the probability of error vanishes exponentially fast as

P tends to infinity. Thus, one may use the standard outage argument

(cf. [9, Chapter 3] and [5]) to conclude that

d = − lim
P→∞

log Pr{Γ̃ ≥ P}
log P

. (13)

It remains to show that the right-hand side of (13) equals (M−K+1).

Let λ and u denote the smallest eigenvalue and associated eigen-

vector, respectively, of HHH and note that

λ−1|uH(s + τz)|2 ≤ ‖H†(s + τz)‖2 ≤ λ−1‖s + τz‖2 . (14)

As Z and A are finite, it follows that there exists a constant c1,

independent of s and z, such that ‖s + τz‖ ≤ c1. The upper bound

in (14) thus implies Γ̃ ≤ λ−1c1 and hence

Pr{Γ̃ ≥ P} ≤ Pr{λ ≤ c1P
−1} .

As it holds that [10]

− lim
P→∞

log Pr{λ ≤ c1P
−1}

log P
= M − K + 1 , (15)

we conclude

− lim
P→∞

log Pr{Γ̃ ≥ P}
log P

≥ M − K + 1 . (16)

The lower bound in (14) implies that Γ̃ ≥ λ−1f(u), where

f(u) � min
p∈PK

|uH
p|2

with p � s + τz ∈ PK and P � A + τZ. As P is finite the

minimum is guaranteed to exist. Hence, a sufficient condition for

Γ̃ ≥ P is given by

{f(u) ≥ γ} ∩ ˘
λ ≤ γP−1

¯
,

for γ > 0. Since u and λ are independent [11], it follows that

Pr{Γ̃ ≥ P} ≥ Pr{f(u) ≥ γ} Pr{λ ≤ γP−1} . (17)

For this bound to be nontrivial, we need to find a γ > 0 such that

Pr{f(u) ≥ γ} > 0. To this end, note that f(u) = 0 if and only

if there is a p ∈ P such that |uHp|2 = 0. By the union bound it

follows that

Pr{f(u) = 0} ≤
X
p∈P

Pr
˘|uH

p|2 = 0
¯

= 0 .

Here, we used the fact that Pr{|uHp|2 = 0} = 0 for any p ∈ P
since u is uniformly distributed over the unit sphere [11] (remember

that A does not include 0).

Thus, there must be some ū for which f(ū) > 0. Since f(u) is

continuous in u, there exists γ > 0 and a non-empty open neighbor-

hood U of ū such that f(u) > γ for all u ∈ U . Hence, Pr{f(u) ≥
γ} = Pr{u ∈ U} > 0. Using this γ in (17) and applying (15) leads

to

− lim
P→∞

log Pr{Γ̃ ≥ P}
log P

≤ M − K + 1 . (18)

Combining (13), (16), and (18) completes the proof.
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