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ABSTRACT
In classical MIMO systems, singular value decomposition
(SVD) is adopted as a common way to decompose the MIMO
channel into parallel subchannels. However, in addition to
its high complexity, it is also sensitive to the ill-conditioning
of the channel matrix. In this paper, we propose a channel
decomposition strategy called LDLH decomposition for low
complexity MIMO precoder design. We show that the com-
putation complexity of LDLH achieves one degree of mag-
nitude lower than that of SVD, as well as some SVD-based
decomposition scheme such as geometric mean decomposi-
tion (GMD) and uniform channel decomposition (UCD). In
addition, we also show that LDLH -based precoder requires
less quantization effort and feedback bandwidth.

Index Terms— MIMO, precoder, SVD, LDLH , limited
feedback.

1. INTRODUCTION

It is well known that the use of multiple antennas promises
substantial capacity gains. In order to exploit these gains, the
system must deal with the distortion caused by the channel
and the interference. Based on the statistical information of
the channel, [2] and [3] have suggested that the use of diago-
nal precoding can greatly improve the system performance.
For channel diagonalization, it has been shown in [1] that
the MIMO channel can be decomposed into parallel eigen-
subchannels, or equivalently, eigen-modes, by means of sin-
gular value decomposition (SVD). Moreover, when perfect
channel state information (CSI) is available to both the trans-
mitter and the receiver, the performance subjected to mini-
mum mean-square error (MMSE) criterion is improved fur-
ther. In addition to SVD, there are even more advanced de-
composition schemes are devised. In [4], transceiver design
based on geometric mean decomposition (GMD) is proposed.
Identical parallel subchannels are obtained by GMD, bring-
ing about convenient design in coding/decoding and modula-
tion/demodulation schemes. However, in addition to the in-
herent SVD operation, it needs extra operations for permuta-
tions and Givens rotations. In [5], an improved version orig-

inated from GMD is given. The flaw that GMD suffers large
capacity loss in low SNR is amended to become strictly ca-
pacity lossless for the whole SNR range, called uniform chan-
nel decomposition (UCD). Starting also from SVD, it is jus-
tified that UCD spends tremendous effort in water-filling and
the generation of a tunable semi-unitary matrix.
In this paper, we propose to use LDLH as the channel

decomposition scheme for low complexity MIMO precoder
design in i.i.d. Rayleigh flat fading channel, where L is the
lower triangular matrix with 1’s along the diagonal while D
is the resultant diagonal matrix. Being endowed with the low
complexity properties of triangular decomposition, e.g., LU
decomposition, we successfully establish a precoder/decoder
architecture based on this apparently succinct matrix decom-
position method. An iterative procedure is also developed to
realize that in a more efficient way. Quantitative analysis of
overhead for both decomposition and feedback quantization
are also presented. The implementation simplicity and nu-
merical stability [6] make LDLH suitable for low complexity
MIMO precoder design.

2. SYSTEMMODEL

We consider a MIMO communication system with N trans-
mitting antennas and M receiving antennas. The channel is
characterized as a Rayleigh flat fading channel. Fig. 1 shows
considered MIMO system. Specifically, a reverse link from
receiver to transmitter is available for sending channel state
information (CSI) obtained at the receiver. In this feedback
channel, limited and quantized CSI is carried. In this paper,
we assume the feedback is delay-free. In Fig. 1, the sampled
baseband signal is represented as

y = BHFs + Bn (1)

where H ∈ CM×N is the channel matrix with rank K . F ∈
CN×K is the precoder matrix. B ∈ CK×M is the decoder
matrix which matches F. s ∈ C

K×1 is the source signal.
x ∈ CN×1 is the transmitted signal that x = Fs. y ∈ CK×1

is the received signal. n ∈ CM×1 is the zero-mean additive
white Gaussian noise (AWGN) such that n ∼ N(0, σ2

nnIM ),
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Fig. 1. A MIMO system with precoder F and decoderB.

i.e., the covariance Rnn = σ2
nnIM , where IM denotes the

identity matrix with dimension M . It is a common situation
that the transmitted symbols are uncorrelated with each other.
Therefore, the input signal vector s is assumed to be zero-
mean and independently distributed with correlation matrix
Rss = E[ssH ] = σ2

ssIK , where (·)H denotes the conjugate
transpose, and E[·] stands for the expectation value.

3. PRECODER DESIGN USING LDLH CHANNEL
DECOMPOSITION

Traditionally we use SVD to decompose the MIMO chan-
nel. However, the computational complexity of SVD amounts
to O(K4). To further reduce the complexity, we introduce
the LDLH decomposition scheme with the obvious advan-
tage that it is a sort of triangular matrix factorization which
is more computation-tractable. According to [6], if a matrix
A ∈ CN×N is Hermitian then there exists a unique lower tri-
angular matrix L with unit diagonal elements lii and a unique
diagonal matrix D = diag{d1, . . . , dK}, that A can be fac-
torized as

A = LDLH . (2)

In which only O(K3) of computation is required.
In general, the channel matrixH is not Hermitian. To ex-

ploit LDLH , we pre-multiplyHH byH in the receiver. Hence
HHH becomes a Hermitian matrix. Assuming thatA equals
toHHH and is factorized as

A = HHH = LDLH . (3)

It follows that

D =
(
L−1HH

)
H

(
L−1

)H
. (4)

The precoder F and the decoderB are then realized as

F = (L−1)HD−
1

2 (5)

B = L−1HH . (6)

The purpose of mutiplying D−
1

2 is to normalize the noise
level. The equivalent signal model of (1) now becomes

y =
(
L−1HH

)
H

(
L−1

)H
D−

1

2 s +
(
L−1HH

)
D−

1

2 n

= D
1

2 s + nL (7)

Fig. 2. Processing steps of LDLH in receiver: (a) Construct-
ing Hermitian matrix, (b) Decomposition, (c) Matrix inver-
sion and (d) Quantization.

where nL is the equivalent noise in LDLH regime. The noise
covariance RnLnL

is still σ2
nnIM . In [8], solid proofs are

given to justify that LDLH is superior to SVD in both the
channel condition number and the symbol error rate.

4. COMPLEXITY ANALYSIS

Practical implementation using LDLH is discussed in this
section. For comprehensive realization, we divide the flow
of LDLH decomposition and quantization feedback into four
steps denoted as (a), (b), (c), and (d), as shown in Fig. 2.
The HHH is constructed in (a). The LDLH decomposition
is carried out in (b). The matrix inversion is performed in
(c). At last, the quantization for feedback is implemented in
(d).
In part (a), normally M complex multiplications (CMs)

and (M − 1) complex additions (CAs) are required to obtain
each aij , where aij is the element of A in i-th row and j-th
column. Since A is Hermitian and with dimension N × N ,
therefore, only N(N − 1)/2 elements of A are needed to
be calculated. Therefore, totallyMN(N + 1)/2 of CM and
(M − 1)N(N + 1)/2 of CA are required in part (a).
For operations ofA = LDLH in part (b), we have devel-

oped an iterative algorithm to avoid numerous computations
which happens by using traditional way of Gaussian elimina-
tion and pivoting. Specifically, during the iteration processes,
an iteration variable rij(k) is involved to efficiently derive
each lij and di. It is defined as

rij(k) =

⎧⎪⎪⎨
⎪⎪⎩

aij for k = 1
rij(k − 1)−

ri,k−1(k − 1) · r∗j,k−1(k − 1)

rk−1,k−1(k − 1)
for k > 1

, k ≤ j ≤ i ≤ N (8)

where k is the iteration index, while the (·)∗ corresponds to
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the conjugate operation. The lij is then derived as

lij =

⎧⎪⎨
⎪⎩

rij(j)(∑N

i=j r2
ij(j)

) 1

2

for j �= N

1 for j = N

(9)

and also the di:

di =

⎧⎨
⎩

∑N

i=j r2
ij(j)

rjj(j)
for j �= N

rNN (N) for j = N.

(10)

To show rij(k), lij and di really construct aij , the proof is
given below.

Lemma 1. Prove that rij(k), lij and di represented in (8),
(9) and (10) construct aij

Proof. For Hermitian matrixA = LDLH , we have

aij =

⎧⎨
⎩ j ≤ i :

j∑
k=1

likdkkl∗jk

j > i : aij = a∗

ji

(11)

where k is the number of iteration step. Substitute (9) and
(10) into (11), for j ≤ i, we have

aij =

j∑
k=1

⎛
⎜⎝ rik(k)(∑N

i=k r2
ik(k)

) 1

2

⎞
⎟⎠ ·

(∑N

i=k r2
ik(k)

rkk(k)

)

·

⎛
⎜⎝ r∗jk(k)(∑N

j=k r2
jk(k)

) 1

2

⎞
⎟⎠

=

j∑
k=1

rik(k)r∗jk(k)

rkk(k)
. (12)

In (12), we take out the j-th term from the summation term
and obtain

aij =

j−1∑
k=1

rik(k)r∗jk(k)

rkk(k)
+

rij(j)r
∗

jj(j)

rjj(j)

=

j−1∑
k=1

rik(k)r∗jk(k)

rkk(k)
+ rij(j). (13)

In (13), we separate the term rij(j) into two parts and take
out the (j − 1)-th term from the summation, then obtain

aij =

j−1∑
k=1

rik(k)r∗jk(k)

rkk(k)
+ rij(j − 1)

−
ri,j−1(j − 1) · r∗j,j−1(j − 1)

rj−1,j−1(j − 1)

=

(
j−2∑
k=1

rik(k)r∗jk(k)

rkk(k)
+

ri,j−1(j − 1) · r∗j,j−1(j − 1)

rj−1,j−1(j − 1)

)

+ rij(j − 1) −
ri,j−1(j − 1) · r∗j,j−1(j − 1)

rj−1,j−1(j − 1)

=

j−2∑
k=1

rik(k)r∗jk(k)

rkk(k)
+ rij(j − 1). (14)

Again, in (14), we separate the term rij(j − 1) into two parts
and take out the (j − 2)-th term from the summation, then
obtain

aij =

j−3∑
k=1

rik(k)r∗jk(k)

rkk(k)
+ rij(j − 2). (15)

Perform the same calculation recursively, we finally reach

aij =

j−(j−1)∑
k=1

rik(k)r∗jk(k)

rkk(k)
+ rij(2)

=
ai1a

∗

j1

a11
+ aij −

ai1a
∗

j1

a11

= aij .

We clearly show that the rij in (8), lij in (9) and dij in (10)
constitute aij . �

In (8), each rij(k) requires 2 CMs, 1 CA and N − 1 divi-
sions (DIV) for k > 1. In (9) and (10), the number of rij(k)
needed for both L andD is 1

6N(N − 1)(N + 1). Therefore,
total 1

3N(N − 1)(N + 1) CMs, 1
6N(N − 1)(N + 1) CAs,

N−1DIVs andN−1 square roots (SR) are required for both
(9) and (10). By using the fact that N DIVs ≡ N CMs and
N SRs≡ N2 CMs. we have total

(
1
3N3 + 1

2N2 + 13
6 N − 3

)
CMs and

(
1
6N3 + 1

2N2 − 2
3N

)
CAs are needed for part (b).

Table 1. Complexity comparison between LDLH and SVD-based decomposition schemes
Operation Decomposition Quantization {(d)}
Computation CM CA CM CA

SVD 3

2
N

4 − 5

2
N

3 + 41N
2 + N − 41

3

2
N

4 − 7

2
N

3 + 35N
2 − N − 32 6N

3 + 2N
2 + N 3N

2 + 60N

GMD 3

2
N

4 − 5

2
N

3 + 73N
2 + 5N − 77

3

2
N

4 − 7

2
N

3 + 65N
2 + N − 64 6N

3 + 2N
2 + N 3N

2 + 60N

UCD 3

2
N

4 − 5

2
N

3 + 110N
2 + 7N − 116

3

2
N

4 − 7

2
N

3 + 94N
2 + 2N − 94 6N

3 + 2N
2 + N 3N

2 + 60N

LDLH {(a)+(b)+(c)} N
3 +

5

2
N

2 +
5

2
N − 6

5

6
N

3 + 2N
2 − 5

6
N − 2 4N

3 + N
2 + N N

2 + 15N
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The inversion computation for (c) is straightforward. To-
tal of 1

6N(N −1)(N +4) CMs and 1
6N(N −1)(N −2) CAs

are needed.
The quantization scheme of (d) is the key to precoder de-

sign either in complexity or performance. In this paper, we
use the process of constructing Householder-reflection ma-
trix presented in [6] and the codebook designed in [9] for
good resolution over limited feedback bandwidth for all four
schemes. Apparently the feedback matrix (L−1)HD−

1

2 of
LDLH scheme can take the advantage that N(N−1)

2 of zeros
need not be taken into the calculations. Therefore, we evalu-
ate that 2N3 + N2 savings of CM and 2N2 + 45N savings
of CA can be obtained.
A quantitative comparison about complexity of decom-

position between LDLH and SVD-based ones such as SVD,
GMD and UCD is demonstrated in Table 1 for a N × N
MIMO system and N symbol streams. In addition to the
savings of quantization complexity, we clearly see that the
decomposition complexity of both CM and CA of proposed
LDLH are lower by one order of magnitude than others.

5. SIMULATIONS AND DISCUSSIONS

Numerical analyses have been conducted to aM = 4,N = 4
MIMO system operates in an i.i.d. Rayleigh flat fading chan-
nel. Decomposition schemes such as SVD, GMD and UCD
are evaluated for comparisons. The modulation is 16-QAM
for all subchannels of all cases. MMSE detector is used for
SVD and LDLH while V-BLAST detector is used for UCD
and GMD. Performance of open-loop MMSE is also intro-
duced to give a contrast upper bound and is denoted “OL-
MMSE” as the legend. The BER performance are shown in
Fig. 3. In this figure, UCD is the best one due to its higher
diversity gain. Both UCD and GMD outperform SVD and
LDLH by the advantage of subchannel uniformity fitted with
constant modulation scheme, though, at the cost of high com-
plexity. It is identified that LDLH outperforms SVD. This
result is consistent with the proof given in [8].

6. CONCLUSION

We have presented a LDLH scheme for MIMO channel de-
composition. Quantitative analysis of complexity is given to
illustrate that LDLH has lower computation overhead com-
pared with that of SVD, UCD and GMD. As many as one
order of magnitude of complexity is achieved by utilizing our
iterative algorithm. Furthermore, the low complexity is also
verified in the quantization feedback processes. Analytical
data shows the error performance of LDLH is better than that
of SVD. All those make LDLH an appealing channel decom-
position scheme for low-complexity MIMO precoder design.

Fig. 3. Simulation results of BER vs. SNR for SVD, LDLH ,
GMD and UCD based on 2000 Monte Carlo trials in N = 4
andM = 4MIMO system.
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