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ABSTRACT

Training-based estimation of channel state information in multi-
antenna systems is analyzed herein. Closed-form expressions for the
general Bayesian minimum mean square error (MMSE) estimators
of the channel matrix and the squared channel norm are derived in
a Rayleigh fading environment with known statistics at the receiver
side. When the second-order channel statistics are available also
at the transmitter, this information can be exploited in the training
sequence design to improve the performance. Herein, mean square
error (MSE) minimizing training sequences are considered. The
structure of the general solution is developed, with explicit expres-
sions at high and low SNRs and in the special case of uncorrelated
receive antennas. The optimal length of the training sequence is
equal or smaller than the number of transmit antennas.

Index Terms— Channel matrix, Squared Frobenius norm,
MMSE estimation, Rayleigh fading, Training optimization.

1. INTRODUCTION

The performance of wireless communication systems can be drasti-
cally improved by using multiple antennas, but the potential gains
come with the requirement of accurate channel state information
(CSI) at both the transmitter and the receiver [1, 2]. In many prac-
tical multiple-input multiple-output (MIMO) systems, the long-term
channel statistics can be regarded as known, through reverse-link
estimation or a negligible signalling overhead. Instantaneous CSI
needs however to be estimated at the receiver and then fed back with
finite precision. Channel estimation techniques are commonly di-
vided into three categories: training-based, semi-blind, and blind.
In the former, the estimation is entirely based on transmission of
training sequences (known a priori to the receiver) [3, 4]. The other
extreme is blind estimation, which only exploits some known struc-
ture of the received data. The combination of these techniques is
called semi-blind estimation. None of the approaches are clearly su-
perior; training improves estimation, but the time and power spent on
training is taken away from the actual data transmission. It is indi-
cated in [5] that the semi-blind approach is preferable, in particular in
comparison to blind estimation. Herein, we consider training-based
estimation, without claiming the approach to be optimal.

By nature, the channel is stochastic, which motivates Bayesian
estimation—that is, modeling of the current state as a realization
from a multi-variate probability density function (PDF). Hence, the
channel statistics need to be known a priori, but this is usually not a
limitation (as mentioned above). Yet, there is a large amount of liter-
ature on estimation of deterministic MIMO channels, which is more
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analytically tractable. The survey in [6] compares the deterministic
and Bayesian approach and, as expected, the latter is superior.

Herein, we consider training-based Bayesian minimum mean
square error (MMSE) estimation of a Rayleigh fading MIMO chan-
nel. The problem of finding the linear MMSE estimator was consid-
ered in [3, 4], but although they both claim to use a general linear
form, we show herein that the structure in [3] is in fact restrictive.
The general MMSE estimator of the channel is derived herein, and it
coincides with the linear estimator in [4] and achieves a lower mean
square error (MSE) than [3]. Herein, we also derive the MMSE es-
timator of the squared Frobenius norm of the channel. This is an
extension of [7] and is of great interest since the squared norm de-
scribes the signal-to-noise ratio (SNR) of many systems and since
indirect calculation from an estimated channel matrix usually is sub-
optimal. For both the channel matrix and the squared norm estima-
tors, the structure of the optimal training sequences will be analyzed
and explicit expressions will be given at high and low SNRs, as well
as in the case of uncorrelated receive antennas. Outlines of some of
the proofs are provided herein, while all details are given in [8].

2. SYSTEM MODEL

We consider a flat and block-fading MIMO system with a single
base station equipped with an array of nT transmit antennas. There
are one or several mobile users, each with an array of nR receive
antennas. The symbol-sampled complex baseband equivalent of the
narrowband channel to user k at symbol slot t is modeled as

yk(t) = Hkx(t) + nk(t), (1)

where x(t) ∈ C
nT and yk(t) ∈ C

nR are the transmitted and re-
ceived signals, respectively, and nk(t) ∈ C

nR is white complex
Gaussian noise with zero-mean and variance μ. The channel is rep-
resented by Hk ∈ C

nR×nT and modeled as Rayleigh fading with
the covariance matrix Rk. Thus, vec(Hk) ∈ CN (0,Rk), where
the vectorization operator vec(·) gives the column stacking of a ma-
trix. Most of the results herein are derived for Kronecker-structured
covariance matrices, which means that they can be separated as the
Kronecker product Rk = RT

T,k ⊗ RR,k. Here, RT,k ∈ C
nT ×nT

and RR,k ∈ C
nR×nR represent the antenna correlation at the trans-

mitter and the receiver, respectively. The channel and noise statistics
are known at both the transmitter and the receiver.

2.1. Training-Based Estimation

In this paper, we consider estimation of the channel matrix Hk and
of the squared channel norm ‖Hk‖2, where ‖·‖2 denotes the squared
Frobenius norm (i.e., the sum of the squared absolute values of all
the matrix elements). The receiver knows the statistics, but in order
to estimate a function of the unknown realization of Hk, the trans-
mitter typically needs to send a collection of known training vec-
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tors that spans C
nT . These vectors can for example be the columns

of a unitary nT × nT matrix. When the total training power P is
allowed to vary, it was in [9] that optimal number of training vec-
tors is exactly nT in spatially uncorrelated systems. In systems with
non-identical eigenvalue distribution (i.e., spatial correlation) of the
channel covariance Rk, even fewer vectors might be optimal [7, 8].

Let the training matrix P ∈ C
nT ×nT represent the training se-

quence and fulfill the power constraint tr(PHP) = P , where the
total training power P > 0 is a design parameter. The columns
of this matrix are typically transmitted as x(t) at nT consecutive
symbols slots (e.g., t = 1, . . . , nT ) in (1). The received matrix
Yk = [yk(1), . . . ,yk(nT )] of the training transmission is

Yk = HkP + Nk, (2)

where Nk = [nk(1), . . . ,nk(nT )] is the combined noise matrix.

3. MMSE CHANNEL AND NORM ESTIMATION

Next, we consider MMSE estimation of Hk and ‖Hk‖2 at a receiver
k that knows the training sequence P, the received signal Yk from
the system model in (2), and the channel and noise statistics.

From Bayesian theory [10], the MMSE estimator of a vector h
from an observation y can be expressed as

ĥMMSE = E{h|y} =

∫
hf(h|y)dh, (3)

where E{·} denotes the expected value and f(h|y) is the condi-
tional PDF of h given y. The MMSE estimator minimizes the MSE

E{‖h− ĥMMSE‖2} and the optimum can be calculated as the trace
of the covariance of f(h|y) averaged over y.

3.1. MMSE Channel Estimation
There are many reasons for estimating the channel matrix Hk at the
receiver. Instantaneous CSI can, for example, be used for receive
processing (improved interference suppression and simplified detec-
tion) and feedback (to employ beamforming and rate adaptation).
The following theorem gives the MMSE estimator of the channel
matrix and does not require a Kronecker structured Rk.

Theorem 1. The MMSE estimator ĤMMSE of Hk with the obser-
vation Yk, training sequence P, and vec(Hk) ∈ CN (0,Rk) is

vec(ĤMMSE) = RkP̃
H(

P̃RkP̃
H + μI

)−1
vec(Yk), (4)

where P̃ � (PT ⊗ I). The corresponding MSE is

E{‖vec(Hk)−vec(ĤMMSE)‖2} = tr
{(

R−1
k +

P̃HP̃

μ

)−1
}

, (5)

where tr{·} denotes the matrix trace.

Proof. The theorem follows from that the conditional distribution of

vec(Hk) is CN (
( P̃H P̃

μ
+R−1

k )−1 P̃H

μ
vec(Yk), (R−1

k + P̃H P̃
μ

)−1
)
,

which is shown using Bayes’ formula and some identification.

Remark 1. Observe that the general MMSE channel estimator in

Theorem 1 is linear; it has the form vec(ĤMMSE) = Avec(Y) and
coincides with the linear MMSE estimator derived in [4]. Thus, the
estimator in (4) is also the linear MMSE estimator for any PDF of
vec(Hk) with the same mean and covariance, with (5) as its MSE.

Remark 2. The linear estimator proposed in [3] was claimed to be
the linear MMSE estimator, but this statement is only valid in the
special Kronecker-structured case with uncorrelated receive anten-
nas (RR,k = λ(R)I). In general, the estimator presented in [3] cor-
responds to a subset of linear estimators that fulfills A = (AT

o ⊗ I).

3.1.1. MSE Minimizing Training Sequences

The MMSE estimator in (4) and its MSE in (5) depend on the train-
ing matrix P. Next, we will analyze the impact of the training matrix
design on the estimation performance. In multi-user systems where
several spatially separated users want to estimate their channels si-
multaneously, any unitary matrix (scaled to fit the power constraint)
is optimal; the explanation is that the training sequence needs to be
based on information available at all receivers. When only a single
user is active, the training sequence can however be tailored for the
spatial properties of the covariance matrix of this user. The intuition
is that more power should be allocated to estimate the channel along
strong eigenmodes than along weak eigenmodes.

The next theorem characterizes the MSE minimizing training
matrix P, and the user indices have been dropped for brevity.

Theorem 2. Let the covariance matrix R fulfill the Kronecker model
R = RT

T ⊗ RR, and let RT = UT ΛT UH
T be the eigenvalue de-

composition of RT . The training matrix P that minimizes the MSE
in (5) has the structure P = UT ΣVH , where V is an arbitrary
unitary matrix and Σ = diag(

√
σ1, . . . ,

√
σnT ). When P satisfies

this structure, the MSE is convex in the training powers σj .
Let the eigenvalues of RT and RR be denoted λ

(T )
1 , . . . , λ

(T )
nT

and λ
(R)
1 , . . . , λ

(R)
nR , respectively. Then, the MSE minimizing train-

ing power allocation σ1, . . . , σnT is ordered in the same way as
λ

(T )
1 , . . . , λ

(T )
nT and is given by the following system of equations:

nR∑
l=1

μ(λ
(T )
j λ

(R)
l )2(

μ + σjλ
(T )
j λ

(R)
l

)2
= α, (6)

for all j such that α <
∑

l(λ
(T )
j λ

(R)
l )2/μ and σj = 0 otherwise.

The parameter α ≥ 0 is chosen to fulfill the constraint
∑

j σj = P .
Let ñ = rank(RT ) be the number of non-zero eigenvalues of

RT and let m̃ be the multiplicity of its largest eigenvalue. Then, the
asymptotic solution at high SNR (defined as P/μ) is σj = P/ñ for
all j such that λ

(T )
j > 0 and σj = 0 for all j such that λ

(T )
j = 0

(i.e., equal power allocation among all non-zero eigenmodes). The
asymptotic solution at low SNR is σj = P/m̃ for all j such that
λ

(T )
j = maxi λ

(T )
i and σj = 0 otherwise (i.e., selective allocation

to the strongest eigenmode, with multiplicity).
In the case of uncorrelated receive antennas, RR = λ(R)I, the

waterfilling solution of (6) transforms into an explicit expression:

σj =

√
μ

α
− μ

λ
(T )
j λ(R)

for α <
(
λ

(T )
j λ(R))2

/μ, (7)

and σj = 0 otherwise, where α should fulfill the power constraint.

Remark 3. The structure of the MSE minimizing training matrix was
proved in [4], along with somewhat similar asymptotic results. The
optimal power allocation for the special case of uncorrelated receive
antennas coincides with that proposed in [3]. With arbitrary corre-
lation, the restrictions made in [3] leads to simpler training power
expressions, but also to suboptimal performance (see Section 4).

Remark 4. Observe that the MSE minimizing training power alloca-
tion in Theorem 2 has the statistical waterfilling structure, and that
it depends on the available training power P and the spatial corre-
lation. When the correlation is pronounced, we can expect some of
the powers σj to be zero. Say that m < nT of them are non-zero,
then there is no reason for the training sequence to contain more than
m vectors. This stands in contrast to [9] that states that the optimal
number always is equal to nT , without taking the spatial correlation
into account. In the special case of uncorrelated receive antennas,
the optimal training length m can be derived explicitly [8].
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3.2. MMSE Channel Norm Estimation

Next, we consider MMSE estimation of the squared channel norm
‖Hk‖2. This norm corresponds directly to the SNR in space-time
coded systems and has a large impact on the SNR in many other
types of systems [11]. Based on the structure of the solution in The-
orem 2, we limit the analysis to training matrices whose left singular
vectors coincide with the eigenvectors of the transmit-side covari-
ance RT,k: P = UT,kΣVH . It is our conjecture that the MSE min-
imizing training matrix for norm estimation has this form, exactly as
in the channel estimation case. For this type of eigen-training matri-
ces, the following theorem gives the MMSE estimator.

Theorem 3. Let Hk have the distribution vec(Hk) ∈ CN (0,Rk),
where the eigenvalue decomposition of the Kronecker-structured co-
variance matrix is Rk = (UT

T,k ⊗UR,k)Λk(UT
T,k ⊗UR,k)H . The

MMSE estimator ρ̂kMMSE of ρk � ‖Hk‖2, with the observation Yk

and the training sequence P = UT,kΣVH , is

ρ̂kMMSE = μ1T Bk1 + ỹH
k Σ̃B2

kΣ̃
H ỹk, (8)

where ỹk � vec(UH
R,kYkV), Bk � Λk

(
Σ̃ΛkΣ̃

H + μI
)−1, Σ̃ �

(ΣT ⊗ I), and 1 � [1, . . . , 1]T . The corresponding MSE is

E{|ρk − ρ̂kMMSE|2} = 1T Bk (2μΣ̃ΛkΣ̃
H + μ2I)Bk1. (9)

Proof. In the single-antenna case, we achieve the conditional PDF

f(ρk|Yk)=
Pλ+μ

λμ
e
−ρk

Pλ+μ
λμ e

−�y
Pλ

μ(Pλ+μ) I0

( 2

μ

√
Pρk�y

)
,

using Bayes’ formula and some calculations. Here, �y = ‖Yk‖2

and Iν(·) is the modified Bessel function of the first kind. The es-
timator in the MIMO case follows by integration and by separating
the problem into nT nR independent single-antenna problems.

3.2.1. MSE Minimizing Training Sequences

Next, we consider MSE minimization based on the training sequence
P = UT,kΣVH used in Theorem 3. There are two types of se-
quences that can be represented by a matrix like this. In a system
with multiple active users, P cannot depend on any of the users.
Hence, we need Σ =

√P/nT I, which means that P becomes a
(scaled) arbitrary unitary matrix. If only a single user is active, we
are allowed to choose any Σ = diag(

√
σ1, . . . ,

√
σnT ) that ful-

fills the power constraint tr(PPH) = tr(ΣΣH) = P . As for the
channel estimator, we therefore use the training sequence to mini-
mize the MSE. Contrary to the optimization in Section 3.1, the MSE
of the norm estimator is not convex in the training powers, which
makes it difficult to derive a closed-form solution. The following
theorem will however give the asymptotic solution at high and low
SNRs, as well as explicit expressions for the case of uncorrelated
receive antennas. The user indices have been dropped for brevity.

Theorem 4. Let the eigenvalues of RT and RR be denoted
λ

(T )
1 , . . . , λ

(T )
nT and λ

(R)
1 , . . . , λ

(R)
nR , respectively. Then, the MSE

minimizing training power allocation σ1, . . . , σnT is given as one
of the solutions to the following system of equations:

nR∑
l=1

2σjμ(λ
(T )
j λ

(R)
l )4

(μ + σjλ
(T )
j λ

(R)
l )3

= α, (10)

for all σj > 0 (among j = 1, . . . , nT ) and σj = 0 otherwise. The
parameter α ≥ 0 should fulfill the power constraint

∑
j σj = P .

The asymptotic solution at high SNR is σj =P
√

λ
(T )
j /

∑
i

√
λ

(T )
j

for all j (i.e., proportional allocation with λ
(T )/2
j as the proportion-

ality coefficient). The asymptotic solution at low SNR is σj = P
for some j such that λ

(T )
j = maxi λ

(T )
i and σj = 0 otherwise (i.e.,

selective allocation to one of the strongest eigenmodes).
In the case of uncorrelated receive antennas, RR = λ(R)I, the

MSE minimizing solution is given by either σj = 0 or

σj(m) =

√
8μλ

(T )
j λ(R)

3α
cos

(π(−1)m − φ

3

)
− μ

λ
(T )
j λ(R)

, (11)

for m = 0, 1, where φ = arctan

√
8(λ

(T )
j λ(R))3

27μα
− 1 and α ≥ 0

is chosen to fulfill the power constraint. The latter two potential
solutions only exist when α ≤ 8(λ

(T )
j λ(R))3/(27μ) and represents

solutions in different intervals: 0≤σj(1)≤ μ

2λ
(T )
j λ(R)

≤σj(0)<∞.

Assume, without loss of generality, that the eigenvalues λ
(T )
j are

ordered non-increasingly. Then, σj ≥ σi for all j < i. Thus, if σi is
given by m=0 in (11), then σj is also given by m=0 for 1≤j <i.

Remark 5. Although the MSE is non-convex, the theorem shows
that the asymptotic solutions (of the special type P = UT,kΣVH )
at high and low SNRs can be derived explicitly. Observe that the
power allocation is similar with that for channel matrix estimation at
low SNR, while the asymptotic behaviors are different at high SNR.
In the case of uncorrelated receive antennas, the theorem shows that
the explicit solution lies in a closed set with a cardinality that scales
with nT as 2nT , which becomes the worst case complexity.

Remark 6. Under the additional constraint that σj ≥ μ

2λ
(T )
j λ

(R)
l

for

all j, l, the MSE becomes convex. Thus, the system of equations
in (10) has a unique solution, which in the case of RR = λ(R)I is
given by m = 0 in (11) for all σj larger than the new lower bound.

4. NUMERICAL EXAMPLES

In this section, the performance of the proposed MMSE estimators of
the channel matrix and the squared channel norm will be illustrated
numerically. We consider a Kronecker-structured system where the
transmitter and the receiver are equipped with four antennas each.
The antenna correlation follows the exponential model [12], which
in principle models a uniform linear array (ULA) with the correlation
between adjacent antennas as a parameter. The antenna correlation at
the transmitter and receiver side is fixed at 0.8 and 0.6, respectively.

The normalized MSEs, defined as E{‖H−ĤMMSE‖2}/tr(R),
of different channel estimators are given in Fig. 1 as a function of the
SNR, defined as SNR = P/μ. The simulation compares the perfor-
mance of the MMSE channel estimator derived in Theorem 1 with
the linear estimator proposed in [3], for the two cases of a uniform
training sequence (P =

√P/nT I) and MSE minimizing training.
The latter estimator has previously been claimed to minimize the
MSE, but it is clear from Fig. 1 that the correct MMSE estimator
derived herein gives a better MSE performance; the difference is
non-negligible, both with and without training optimization. It is
also clear that training optimization can improve the performance
considerably at low SNR, while the advantage disappears asymp-
totically at high SNR. This confirms the result in Theorem 2 that
uniform training is asymptotically optimal at high SNR.

In Fig. 2, the normalized MSEs, defined as E{∣∣‖H‖2 −
‖ĤMMSE‖2

∣∣2}/tr(RRH), for different squared norm estimators
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Fig. 1. The normalized MSEs of channel matrix estimation as a
function of the SNR for two estimators: the linear estimator of [3]
and the optimal MMSE estimator derived herein. The two cases of
uniform training and MSE minimizing training are considered.

are given as a function of the SNR. The simulation compares the
performance of the MMSE estimator derived in Theorem 3 with the
performance achieved by first estimating the channel matrix using
Theorem 1 and then calculating the squared norm. In the latter case,
uniform and channel matrix MSE minimizing training are consid-
ered. For the MMSE estimator, three different training sequences are
considered: uniform, channel matrix MSE minimizing, and channel
norm MSE minimizing.

The first observation from Fig. 2 is that the indirect approach
gives poor performance at low SNR (even worse than the statistical
estimator ρ̂stat= tr{R} that would give unit normalized MSE), while
it approaches the performance of the MMSE estimator at high SNR.
It is clear that the performance can be considerably improved by
training optimization. Obviously, the best performance is achieved
by optimizing over the MSE, but the MMSE estimator achieved with
a training sequence optimized for channel matrix estimation gives a
considerable performance gain in comparison with uniform training
(especially at low SNR, while both have suboptimal asymptotic be-
haviors at high SNR). This is probably the most important case in
practice; the training sequence will be used to maximize the knowl-
edge of the channel matrix at the receiver, but the received training
signal can simultaneously be used to calculate an MMSE estimate of
the squared channel norm (e.g., for the purpose of feedback).

5. CONCLUSIONS

In this paper, training-based estimation of the channel matrix and
the squared Frobenius norm of the channel have been studied for
Rayleigh fading MIMO systems. By assuming that the channel
statistics are known at the receiver, the MMSE estimators and their
corresponding MSEs were derived in closed-form for general train-
ing sequences (a condition was required for the squared norm).
When the statistics also are known at the transmitter, the training
sequences may be optimized to minimize the MSE and the optimal
sequence length will be smaller or equal to the number of transmit
antennas. The MSE minimizing training sequence for channel ma-
trix estimation was derived and can be expressed explicitly at high
and low SNRs and for uncorrelated receive antennas. For channel
norm estimation, the MSE is non-convex, but the asymptotic solu-
tions were derived and expressions were given for low-complexity
computation of the MSE minimizing training sequence for uncor-
related receive antennas and in a special case when an additional
power constraint was imposed. Finally, the performance of the
general MMSE channel estimators were illustrated numerically.
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Fig. 2. The normalized MSEs of channel norm estimation as a func-
tion of the SNR for two estimators: the direct MMSE estimator de-
rived herein and indirect estimation from an MMSE estimated chan-
nel matrix. The performance of the direct estimator is shown with
uniform, channel matrix MSE minimizing, and channel norm MSE
minimizing training. The performance of the indirect estimator is
shown with uniform and channel matrix MSE minimizing training.
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