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ABSTRACT

This paper presents a novel approach for computing both the
minimum-phase lter and the associated all-pass lter in a
computationally ef cient way using fast QL-factorization. A
desirable property of this approach is that the complexity is
independent of the size of the matrix being QL-factorized.
Instead, the complexity scales with the required precision of
the lters as well as the lter length.

Index Terms— Communications, pre ltering, minimum-
phase systems, fast QL-factorization.

1. INTRODUCTION

The minimum-phase lter has an important role in general
signal processing theory, see e.g. [1], and one application
thereof is communication systems when higher-order mod-
ulation schemes over multipath channels are used. In such
systems, optimal sequence detection can be obtained using
Maximum-Likelihood Sequence Estimation (MLSE), but
MLSE typically require an unacceptable high complexity
for channels with large delay spread (i.e. long impulse re-
sponses). Therefore, other suboptimal techniques such as
delayed decision feedback, or reduced-state sequence estima-
tion, will often be used in such systems [2]. To obtain reliable
detection using these techniques, both the minimum-phase
and the associated all-pass lter are used.
In this paper we describe a new approach for ef ciently
computing the minimum-phase lter and the all-pass lter by
performing a fast QL-factorization of the channel matrix. The
paper is organized as follows; In Section 2 we present the sig-
nal model and Section 3 describes the connection between the
minimum-phase lter and the QL-factorization. In Section
4 we illustrate how the fast QL-factoization can be utilized
for time-invariant channels, while the simulation results are
found in 5. Finally, Section 6 contains some concluding
remarks.

2. SYSTEM MODEL

Consider a time-invariant Single-Input Single-Output (SISO)
system1, which can be described by the Finite Impulse Re-
sponse (FIR) lter,H, having the length L. The output signal
yk ∈ C at time index k can be expressed as

yk =
L−1∑
l=0

hlxk−l , (1)

where xk ∈ C is the input signal at time index
k = {1, 2, . . . , N + L− 1}, N is the length of the input se-
quence, and hl ∈ C denotes the l’th tap in the impulse re-
sponse. Using matrix notation, the system model in (1) can
be formulated as

y = Hx , (2)

where y =
[

y1, y2, . . . , yN+L−1

]T
and

x =
[

x1, x2, . . . , xN

]T
. To ease the notation let

M � (N + L− 1), leading to y ∈ C
M . Due to the time-

invariant property of the lter, H ∈ C
M×N will be a banded

Toeplitz convolution matrix having the form

H �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h0 0 · · · 0
... h0

. . .
...

hL−1
. . .

. . . 0

0
. . .

. . . h0

...
. . .

. . .
...

0 · · · 0 hL−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In the analysis of the lter characteristic, it is often useful to
z-transform the channel impulse response [1], which leads to

H(z) =
L−1∑
l=0

hlz
−l . (3)

1Results presented may be directly extended to Multiple-Input Multiple-
Output (MIMO) systems, but this is outside the scope of this paper.
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A classical way of obtaining the minimum-phase lter, Hmin,
is by using the root method of spectral factorization, where
we rst nd roots in the polynomial given in (3), and re ect
the roots located outside the unit circle, into the circle, [1],
[3]. Based on the roots inside and on the unit circle, a new
polynomial can be computed in the z-domain, which repre-
sents the minimum-phase lter. There exists however several
other spectral factorization methods which among others is
described in [4]. In many applications (e.g. in communica-
tions) we also need the associated all-pass lter, which is used
to pre lter the output signal, y, such that the modi ed out-
put signal matches the minimum-phase lter. As nding the
minimum-phase and all-pass lters can be computationally
expensive, approximative methods having lower complexity
may be of practical interest [2].

3. QL-FACTORIZATION AND THE
MINIMUM-PHASE FILTER

It is well-known that the minimum-phase lter can be ob-
tained in various ways, [4] and recently, it has been discov-
ered that the minimum-phase lter and its associated all-pass
lter can be obtained by performing a QL-factorization of the

channel matrix, H, [5], [6]. When we perform the factoriza-
tion,

H = QL̃ = Q
[

0(M−N)×N

L

]
, (4)

we require that the N × N lower triangular matrix, L, cor-
responds to the Cholesky factor of HHH, meaning that L
is positive de nite and contains real-valued positive diagonal
elements (assuming that rank(H) = N ). Since we perform
a factorization of a banded Toeplitz matrix, each row in L
will be a shifted version of each other as {M,N} → ∞, and
each row is precisely given by the spectral factorization, [7].
Likewise, the M × M unitary matrix Q will be the matrix
equivalent of the all-pass lter and again each column of Q
will be a shifted version of each other. Furthermore, it can be
seen that each of these columns will correspond to the all-pass
lter associated with the minimum-phase lter. For a detailed

description of this, see [5], [6].
In the nite length case, each row of L (column of Q) will not
be exactly the same, but as can be seen in [6], the values in
each row of L will converge toward the true minimum-phase
lter as a function of the row number2, likewise the columns

of Q will converge toward the associated all-pass lter. Thus,
the accuracy of the estimated lter coef cients (compared to
the true lters) depends on where in L and Q we take out the
lter coef cients.

4. FAST QL-FACTORIZATION

When general methods are used to compute the QL-factorization
it requires O (

N3
)

operations, [8], but for Toeplitz matrices

2Using the Householder method, elements of rows in L converge toward
the minimum-phase lter from the bottom and up due to elements in the lower
triangular matrix being computed from the bottom and up.

there exist methods with lower computational complexity.
Different methods have been proposed for performing the
fast QL-factorization3 [8], [9], [10], each of which has differ-
ent numerical properties and slightly different complexity as
well. They do however all use the shift-invariance property
of Toeplitz matrices to partition it in two ways, and it is this
partitioning that leads to the low complexity schemes. In [8],
the QL-factorization can be performed using 13MN + 6N2

operations for general M × N Toeplitz matrices, while the
method proposed in [10] require 13MN +6.5N2. The meth-
ods described in [8], [9], and [10] all deal with real-valued
matrices, but the results can be extended to be valid over the
complex eld, [10]. To extend the method in [8] to handle
complex numbers, will however require another type of rank-
1 downdating, which is described in [11]. The methods can
also be extended to handle block Toeplitz matrices for the
general MIMO case as well, [12].
The fast QL-factorization computes a single row of L (or
column of Q) at a time, which is a great advantage when
the QL-factorization is used for pre lter computation. This
is due to the fact that each row of L converges toward the
true minimum-phase lter, which implies that we can stop
the computation of the rows in L once we have obtained the
required precision of the lter coef cients. Likewise, we
only need to compute a certain fraction of the columns in Q
to obtain the required precision of the all-pass lter. Thus,
by using the fast QL-factorization to compute the lters, the
complexity no longer scales with the size of the matrix, H,
but depends on the required precision. The number of rows
in L (and thus columns in Q) which is used to obtain the
estimated minimum-phase and all-pass lters, is referred to
as the number of iterations, n.
The complexity of the fast QL-factorization can be reduced
even further, using the fact that the Toeplitz channel matrix,
H, contains at most L non-zero elements in each row. Thus,
using the method described in [8] and the rank-1 downdate
given in [11], we can compute of each row in L using 5L + 7
complex operations and two square root computations. On
top of that we also need to take into account the initializa-
tion step, which among others determines the bottom row
of L 4, requiring (L − 1)L/2 + 4L complex operations and
two square root computations. Thus, if the required preci-
sion of the minimum-phase estimate can be obtained using n
iterations, the computational complexity will be

Omin = (n− 1) · (5L + 7) + (L− 1)L/2 + 4L , (5)

complex operations plus n + 1 square root operations. Each
of the last Lap − L columns of Q require (L + i)(i + 1)
operations where i = {0, . . . , Lap − L− 1} and Lap de-
notes the all-pass lter length. The complexity of computing
each of the j + 1 last columns of Q is Lap(j + 1) for

3Methods for QR-factorization may easily be converted to QL.
4The QL-factorization starts from the bottom row and works its way up

to the top, while the QR-factorization uses a top down approach.
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Fig. 1: Gaussian lter coef cients, L = 7. Mean and me-
dian value of the relative deviations, d (Hmin,true;HL,n) and
d(HL,n; ĤL,n) when Lap = 32.

j = {Lap − L, . . . , Lap}. If the number of required itera-
tions is higher than the length of the pre lter, we also need
Lap(Lap + 1) complex operations to calculate each of the re-
maining columns (i.e. the columns from Lap +1 to n counted
from right to left). Thus, the overall complexity of computing
the pre lter, is

Oap =
∑min{(Lap−1);(n−1)}

k=0 min{(L + k);Lap} · (k + 1)
+ max{0; (n− Lap)} · Lap(Lap + 1)

(6)
assuming that n ≥ Lap − L + 1. Note that the last term in
(6) vanishes when n ≤ Lap and that we will obtain the rst
Lap lter coef cients after (Lap −L + 1) iterations. Thus, in
cases where L is close to Lap we only need a few iterations
if we are willing to sacri ce precision in favor of complexity.
Thus, for the Hilly Terrain (HT0) pro le speci ed in [13], the
minimum-phase lter and the all-pass lters can be obtained
using 503 operations (where L = 10 and using Lap = 14,
n = 5).
The approximate low complexity method proposed in [2],
which uses Linear Prediction (LP) to obtain an estimate of
the all-pass and minimum-phase lters, will approximately
require 1/2·(L+1)(L+2)+L2

p+2Lp+(L+1)(Lp+1) oper-
ations (complex multiplications). Here Lp denotes the order
of the prediction-error lter. When Lp = 14 this method re-
quires 455 operations for the HT0 pro le. Thus, the method
proposed here will for some practical channel pro les have
comparable complexity to that of the LP-method, but in other
cases, the price paid for the better pre lter is a somewhat
higher complexity.

5. SIMULATION RESULTS

In this section, we present simulation results for 3 different
types of SISO channels. First we assume that we have com-
plex Gaussian distributed, CN (0, 1), channel coef cients.
Secondly, we consider two types of channels de ned in the
GSM speci cations [13], namely the Typical Urban (TU0)
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Fig. 2: TU0 pro le, L = 6. Mean and median value of the
relative deviations, d (Hmin,true;HL,n) and d(HL,n; ĤL,n)
when Lap = 32.

and the Hilly Terrain (HT0) pro les, see e.g. [5].
We compute the relative difference between the two lters,
Ha andHb, as a function of the iteration number, n, as

d (Ha,n;Hb,n) � ‖Ha,n −Hb,n‖2
‖Ha,n‖2

, (7)

which is done in order to measure the convergence rate of
the lter coef cients. In the simulations Hmin,true denotes
the impulse response of the true minimum-phase lter, and
HL,n is the impulse response obtained from L (at iteration
n). To measure how well the estimated all-pass lter, HQ,n,
match the estimated minimum-phase lterHL,n, we lter the
original impulse response H with H∗Q,n, which gives us the

output ĤL,n. In all the simulations presented below, we have
made 10000 realizations of the examined channel pro le, and
computed the minimum-phase and the all-pass lter for each
realization. The lter length of the all-pass lter is in all sim-
ulations Lap = 32. Based on the result of the 10000 lter re-
alizations, we have computed the mean and median value of
the relative errors, d (Hmin,true;HL,n) and d(HL,n; ĤL,n).
The result for the Gaussian channel coef cients is shown in
Fig. 1, where we see that there is a convergence toward the
true minimum-phase lter as a function of the iteration num-
ber. In Fig. 2 the result for the TU0 pro le is shown, and
here we can see that the average relative deviation between
the true minimum-phase lter and estimated solution is ap-
proximately 10−2 after 7-8 iterations. To obtain the same rel-
ative deviation between the estimated minimum-phase lter
and the estimated all-pass lter we need approximately 14-15
iterations. We can see from the gure that the median value of
the relative error converges faster than the mean value, which
indicates that some of the realizations will bias the estimate
of the mean value due to ”outliers” in the distribution of the
relative error. By inspecting the approximated PDF for differ-
ent iterations, it is observed that a few realizations converge
slower than the majority, and they will therefore in some sense
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Fig. 3: HT0 pro le, L = 10. Mean and median value of the relative deviations, d (Hmin,true;HL,n) and d(HL,n; ĤL,n) when
Lap = 32. Result given for a) the Householder transformation and for b) and c) the fast QL-factorization using oating-point
double- and single-precision, respectively.

bias the estimate. The realizations which converge slowest
are the ones which contain roots located close to the unit cir-
cle. From Fig. 2 it can also be observed that the convergence
rate of the median value is exponential. Fig. 3b show the
result for the HT0 pro le, and in this case the convergence
is slower than the TU0 pro le. This is not surprising, since
the channel impulse response is longer, which makes it more
likely that there are roots close to the unit circle. For this
pro le we need 21 iterations to obtain an average precision
of 10−2 between the true and estimated minimum-phase l-
ter. In Fig. 1, Fig. 2, and Fig. 3b we see that the relative
difference d(HL,n; ĤL,n) tends to be biased due to the us-
age of a nite length all-pass lter. This bias term can be
decreased by increasing the length of the all-pass lter, Lap.
In the gures we also see that the difference between the true
and the estimated minimum phase lter d(Hmin,true;HL,n)
is biased, which is due to the numerical instability of the rank-
1 down-dating procedure, [11]. This effect can be observed
by inspecting the median value of the difference between the
two lters. To examine the numerical stability of the fast QL-
factorization, the Householder transformation has been used
as a reference. In Fig. 3a the minimum-phase lter for the
HT0 pro le has been computed using Householder transfor-
mation, and the result is compared to the ones obtained by the
fast QL-factorization using either double- or single-precision
oating-point operations.

6. CONCLUSION
In this paper we introduced a new approach for computing
the minimum-phase lter and its associated all-pass lter in a
computationally ef cient manner using fast QL-factorization.
The proposed method convergences asymptotically toward
the true lters with the complexity depending on the required
precision.
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