
PILOT-ASSISTED CHANNEL ESTIMATION FOR MIMO OFDM SYSTEMS
USING THEORY OF SPARSE SIGNAL RECOVERY

Mohammad A. (Amir) Khojastepour, Krishna Gomadam, Xiaodong Wang

NEC Labs America, Princeton, New Jersey, Email: {amir, kgomadam, wangx}@nec-labs.com

ABSTRACT

In this work, a new framework for channel estimation in

MIMO OFDM systems is provided. Sparse channel estima-

tion refers to estimating the time domain channel impulse

response by exploiting the fact that the channel has a very

few nonzero taps. We formalize the problem and drive nec-

essary and sufficient condition on the number of pilots for

perfect channel recovery which leads to a L0 norm optimiza-

tion problem. A practical suboptimal solution is proposed

that is a modified orthogonal matching pursuit (OMP) which

exploits the sparsity structure of the MIMO channel. The

investigations reveal that the training overhead can be dras-

tically reduced while maintaining the same accuracy as the

current state of the art techniques.

Index Terms— Channel estimation, MIMO, OFDM

1. INTRODUCTION

Channel estimation for OFDM systems is traditionally ap-

proached in the frequency domain by estimating the fre-

quency response for a few selected subcarriers and using

those observations to interpolate the rest of the subcarri-

ers.With this approach, the required number of pilots depends

on the coherence bandwidth of the channel. The higher the

bandwidth, the lesser the number of pilots. However, this

approach takes into account only the length of the impulse

response and ignores the sparsity of the wireless channel.

Wireless channels are typically sparse, i.e., the time domain

impulse response of the wireless channels typically has a very

few nonzero taps.

Channel sparsity is attractive from a system design per-

spective since it can be exploited to design more efficient

channel estimation strategies. A recent result on compressed

sensing [1] shows that a discrete time signal of length M with

only T nonzero coefficients can be exactly reconstructed from

just observing any 2T samples of its discrete Fourier trans-

form (DFT) if M is prime. This result has a direct application

in high data rate OFDM systems where the number of sub-

carriers is large. While the result in [1] is remarkable, the

proposed optimal signal recovery principle is combinatorial

in nature. Thus, the optimization problem is relaxed to L1

norm optimization [1]. In [2], the authors employ this algo-

rithm for channel recovery in SISO OFDM systems where the

observations are corrupted with noise. The results indicate the

scope for potential improvement in wireless channel estima-

tion problems by using the theory of sparse signal recovery.

Matching pursuit (MP) is a well-known algorithm used for

sparse signal recovery and has many variants [3]. The algo-

rithm iteratively identifies a small subset of the nonzero posi-

tions, that contribute to most of the energy in the observations.

Although the algorithm is suboptimal and greedy in nature, it

is efficient in terms of performance and complexity.

In this work, we extend the theory of sparse signal re-

covery for application in MIMO OFDM channel estimation

problems which exploits the following properties of the mul-

tipath MIMO channel. (1) The channel between any pair of

transmit and receive antennas has at most T taps, and T
L is

relatively small. (2) The positions of the nonzero taps are

identical for all the channels associated with the point to point

MIMO system. This property follows from the fact that the

propagation delay is roughly the same for all transmit-receive

antenna pairs. Practical channel models such as Spatial Chan-

nel Model (SCM) used in 3GPP incorporate this property for

generating multipath MIMO channels [4].

The rest of paper is organized as follows. In Section 2, we

discuss the channel and system model. The theoretical lim-

its, i.e., the necessary and sufficient conditions on the mini-

mum number of pilots required for perfect channel recovery

in an ideal system where there is no noise at the receivers,

are derived in Section 3. In Section 4, we propose a new

weighted OMP algorithm that exploits the properties of the

MIMO channel. Section 5 contains the numerical results and

we conclude in Section 6.

2. CHANNEL AND SYSTEM MODEL

We consider a multipath environment with T clusters or scat-

terers. The impulse response between the ith transmitter and

jth receiver is modeled as

hji(τ, t) =
T∑

p=1

αji
p (t)δ(τ − τp(t)Ts) (1)

where αp(t) ∈ C and τp(t) ∈ R
+ are the magnitude and

the delay for path p, respectively, and Ts is the sampling in-
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terval of the system. With block-fading channel assumption

where the channel parameters are constant over a block and

assuming perfect symbol level synchronization, the equiva-

lent discrete time channel between transmit antenna i and re-

ceive antenna j can be modeled as

hji(n) =
T∑

p=1

αji
p g((n − τp)Ts) (2)

where g(t) represents the effect of the pulse shaping filter

and the RF front-ends at both the transmitter and the receiver.

It can be noticed that in high data rate communication sys-

tems where Ts is very small compared to the maximum de-

lay spread, (2) results in a channel with a very few nonzero

taps. For a raised-cosine filter with excess bandwidth of 0.5

or greater, the above channel will have approximately T non-

negligible taps.

We consider a cyclic prefix based OFDM system with pi-

lot aided channel estimation and FFT size M . The channel

estimation procedure consists of the following protocol. The

training phase spans nt OFDM symbols in which we assume

the channel remains constant. In the ith slot, the ith trans-

mit antenna sends pilots in Qi subcarriers and the remaining

M − Qi subcarriers are used for data transmission. The set

of pilots chosen for different transmit antennas need not be

the same or disjoint. The received pilots at receive-antenna j
during the mth training slot is given by

bjm =
√

PmSmFhjm + nj , m = 1, ..., nt, j = 1, ..., nr

= Amhjm + nj (3)

where hjm is the M × 1 vector representing the channel be-

tween mth transmit antenna and jth receive antenna, F is the

M×M DFT matrix whose entry corresponding to the pth row

and qth column is given by exp(−j 2π
M pq), Sm is the Qm×M

selection matrix that chooses the Qm rows of the DFT matrix

according to the pilots chosen in the mth slot and the diago-

nal matrix Pm is the power loading matrix that determines the

power allocated to the pilot subcarriers. nj ∼ CN (0, I) is the

additive white Gaussian noise for the selected pilot tones.

It can be noticed that the training stage entails a total of∑nt

m=1 Qm pilots to estimate ntnr channels. We seek to es-

tablish a theoretical limit on the number of pilots required for

perfect channel recovery in an ideal noiseless system and ap-

proach the limit with efficient practical algorithms.

3. THEORY FOR PERFECT RECONSTRUCTION

The channel estimation problem considered in this work falls

under the category of under-determined system since we wish

to estimate the response for a large number of sub-carriers us-

ing a limited number of observations. Here, we extend the re-

sult of [1] that is applicable to SISO channels to the case that

covers MIMO channels. The MIMO channel reconstruction

problem is posed as follows: Consider the following noise-

less observations of the vectors hjm which all have common

sparsity structure1 of size T (e.g., hjm represents the channel

in the frequency domain).

bjm = Amhjm, m = 1, 2, ..., nt, j = 1, 2, ..., nr (4)

What are the conditions to uniquely determine the channels?

Also, what is the minimum number of pilots required to re-

construct all the channels?

Theorem 1 For the linear inverse problem in (4) with M be-
ing prime, perfect reconstruction of all the vectors is guaran-
teed if and only if

max{Q1, Q2, · · · , Qnt} ≥ 2T & min{Q1, Q2, · · ·Qnt} ≥ T.

The proof is through finding two distinct solutions which

satisfy (4) if the conditions of the theorem are not satisfied.

We skip the proof due to space limitation.

The theorem suggests that only (nt + 1)T pilots are

enough to completely reconstruct the set of ntnr channels.

And, the best pilot allocation policy is to allocate 2T pilots for

one transmit antenna and T pilots to the rest of the antennas.

From Theorem 1, one can show that the following optimiza-

tion problem successfully identifies the set of channels if the

conditions in Theorem 1 are satisfied.

min max{‖ hj1 ‖0, ‖ hj2 ‖0, ..., ‖ hjnt
‖0} (5)

s.t. bjm = SmFhjm, m = 1, 2, ..., nt (6)

Nonetheless, this is a discrete optimization problem and is

hard to solve similar to the result for SISO case, i.e., opti-

mization problem for optimal sparse signal recovery in [1]. In

[1], the L0 norm optimization problem is relaxed to L1 norm

to make it tractable. We have considered several suboptimal

algorithm including L1 norm optimization [1], modified FO-

CUSS [3], and modified MP. The MP algorithms are attractive

as they enable low complexity implementations. Due to the

lower complexity and its better performance, we discuss the

proposed MIMO MP in more detail in the following.

4. MIMO MATCHING PURSUIT (MP)

The MP algorithms work by sequentially selecting a small

subset of the tap positions that contribute to the most of the

energy in the receive observations. In our case, although the

tap positions are the same, we have different observations for

different transmit-receive antenna pairs. Further the length

of the observation (the number of pilots) is not the same for

all antennas. Therefore, we need a robust algorithm that can

handle these scenarios.

1A set of vectors {f1, f2, · · · , fL} is said to have a common spar-
sity structure of size T if for any i and k

PM
j=1 δfi−fk (j) ≤ T and

PM
j=1 δfk (j) ≤ T where ∀f : δf(j) = 1 iff the jth element of f is nonzero.
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To begin with, we provide a simple algorithm to convey

the essence of the algorithm. To avoid multiple subscripts, we

only consider the case of 2 × 1. The algorithm can be readily

extended to the general nt × nr case. At each iteration of the

algorithm, we choose a tap position that minimizes the sum of

the norm-squared residue. The residues for the first iteration

are set as b0
1 = b1 and b0

2 = b2. At the first iteration, the tap

position that maximizes the following is chosen:

k1 = arg max
j

|A†
1jb0

1|2 + |A†
2jb0

2|2 j ∈ {1, 2, .., M} (7)

where A1j is the jth column of A1. The residues are then

updated as b1
1 = P⊥

A1j
b0

1 and b1
2 = P⊥

A2j
b0

2 where PW and

P⊥
W are the standard projection operations given by PW =

W(W†W)−1W†, P⊥
W = I − W(W†W)−1W†. At every iter-

ation, the above procedure is followed to add a column to the

set of already selected columns. The residues are calculated

such that they are orthogonal to the set of selected columns.

We can notice that the above algorithm gives equal weight

to both the observations although Q1 may not be equal to Q2.

Further, for the case of perfect reconstruction of the chan-

nels with the minimum number of pilots, only one observation

vector is used to identify the nonzero tap positions which are

common to both the vectors. Therefore, giving equal weight

to the observation vectors during the column selection stage

need not yield the best performance. We use the following

metric to select a column during each iteration: At the pth it-

eration, choose a column that minimizes the weighted sum of

q-norm of the residues where q > 0. That is, the index of the

selected column during pth iteration is

kp = arg min
j

min
x1,x2

w1 ‖ b1 −
[
Cp−1

1 A1j

]
x1 ‖q

+ w2 ‖ b2 −
[
Cp−1

2 A2j

]
x2 ‖q

= arg min
j

w1

(
‖ bp−1

1 ‖2 −
∣∣∣A1j

(p−1)†bp−1
1

∣∣∣2
) q

2

+ w2

(
‖ bp−1

2 ‖2 −
∣∣∣A2j

(p−1)†bp−1
2

∣∣∣2
) q

2

(8)

where Cp−1
i is the matrix whose columns contain the selected

columns of Ai till (p-1)th iteration. In the optimization prob-

lem, the size of xi is p × 1. Let Cp
1(j) =

[
Cp−1

1 A1j

]
,

Cp
2(j) =

[
Cp−1

2 A2j

]
, Ap−1

1j = P⊥
Cp−1

1
A1j , and Ap−1

2j =

P⊥
Cp−1

2
A2j . In following, we discuss the key steps of the pro-

posed algorithm.

Initialization: The residues are initialized as b0
1 = b1 and

b0
2 = b2. Similarly the generating matrices are initialized as

A0
1 = A1 and A0

2 = A2

Tap Detection: The column selection metric can be ob-

tained by using q = 2 in (8). In the pth iteration, the col-

umn is selected which maximizes w1

∣∣∣A1j
(p−1)†bp−1

1

∣∣∣2 +

w2

∣∣∣A2j
(p−1)†bp−1

2

∣∣∣2.

Update: The set of selected columns is updated as

Cp
i (j) =

[
Cp−1

i Aikp

]
. The residues bp

1 and bp
2 are cal-

culated as

bp
1 = (I − PCp

1
)bp−1

1

bp
2 = (I − PCp

2
)bp−1

2 (9)

The generating matrices are updated as

Ap
1 = nrm

(
P⊥

Cp
1
Ap−1

1

)

Ap
2 = nrm

(
P⊥

Cp
2
Ap−1

2

)
(10)

where the nrm function normalizes the columns of the argu-

ment.

Stopping condition: The algorithm continues to iterate

until the maximum number of iterations is reached or the

weighted norm-squared residue goes below a threshold, i.e.

w1 ‖ bp
1 ‖2 +w2 ‖ bp

2 ‖2≤ ε. In systems with noise, ε
is determined according to the signal to noise ratio (SNR).

In general, the greater the SNR, the lower the value of ε. In

our numerical analysis, we assume ε = 0.01 for the noiseless

case.

Convergence: It is straightforward to notice that the al-

gorithm converges since the metric (weighted squared norm

residue) decreases with each iteration.

Tap gain regeneration: After determining the set of

columns to represent the given observations, the estimate

of the channels at the selected tap positions are obtained

through (Cp†
i Cp

i )
−1Cp†

i bi. For the case of noisy observa-

tions, the pseudo inverse can be replaced by a regularized

inverse. That is, the tap values for the selected column in-

dices can be obtained from (Cp†
i Cp

i + 1

SNR
I)−1Cp†

i bi. We

refer to this version as MSE based orthogonal MP.

5. NUMERICAL RESULTS

We consider a SIMO channel with two receive antennas and

randomly select T out of L tap positions. The tap values are

two i.i.d. CN (0, 1) corresponding to the tap positions for the

two channels of the SIMO system. We consider Q randomly

generated pilot positions. In Fig. 1, we plot the accuracy

performance as a function of the number of pilots. It can

be observed that both OMP1 and OMP2 require only 20 pi-

lots to approach perfect accuracy where the theoretical limit

is 16. The figure also shows the performance gain obtained

through joint channel estimation where the sparsity structure

is exploited. About 5 pilots can be saved through joint MP

over independent MP where in the joint MP algorithm, we

use w1 = 0.5 and w2 = 0.5. The L1 norm optimization algo-

rithm can also approach perfect accuracy with about 30 pilots.
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Fig. 1. Accuracy performance in SIMO channel with two
receive antennas as a function of the number of trans-
mitted pilots
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Fig. 2. Correlation combining metrics for OMP q = 2.

Intuitively, the MP algorithm, for each channel, corre-

lates the given observation with each columns of the gen-

erating matrix. Now, using the results of the above opera-

tions, it needs to identify a dominant tap during each itera-

tion. The metric in (8) was arrived at using a weighted least

squares problem. Other metric might also be considered such

as kp = arg maxi a2
i + b2

i or kp = arg maxi aibi where

ai and bi are the absolute correlation between the ith column

of the generating matrix and the residue for the two channels

respectively. In Fig. 2, we compare the performance of dif-

ferent correlation combining metrics. It can be seen that, in

terms of accuracy, the squared norm sum of correlation better

than the others. This metric is the one obtained in Section 4.

In Fig. 3, we compare the BER performance of the

schemes using practical channel model (SCM) [4]. It can be

seen that MSE and ideal MP algorithms perform the best.
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Fig. 3. BER performance of the schemes with BPSK
modulation for the SCM channel model for M=64 and
Q=16.

The practical state-of-art schemes in frequency domain using

linear, quadratic, and Low-pass interpolation as well as direct

LS estimation performs much worse than MP and seriously

suffer from error floor.

6. CONCLUSION

In this work, we identified two important properties of a

MIMO multipath channel in which the individual channels,

in addition to being sparse, follow the same sparsity structure.

We demonstrated the conditions on the required number of

pilots to accurately reconstruct all the channels in a MIMO

OFDM system. The modified MP algorithm is presented

which has proved very efficient in MIMO channel estimation.
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