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ABSTRACT
We present a decision-directed tracking approach to doubly-
selective channel estimation exploiting the complex exponen-
tial basis expansion model (CE-BEM). The time-varying na-
ture of the channel is well captured by the CE-BEM while the
time-variations of the (unknown) BEM coefficients are likely
much slower than those of the channel. We track the BEM co-
efficients via the exponentially-weighted recursive least-squares
(RLS) algorithm, aided by symbol decisions from a decision-
feedback equalizer (DFE). Simulation examples demonstrate
its superior performance over an existing subblock-wise chan-
nel tracking scheme.
Index Terms— Doubly-selective channels, adaptive chan-

nel estimation, recursive least-squares, basis expansion mod-
els

1. INTRODUCTION
Recently basis expansion models (BEM) have been investi-
gated to represent doubly-selective channels in wireless appli-
cations [1, 9, 13]. In contrast to the symbol-wise AR models
that describe the channel variations on a symbol-by-symbol
basis, a BEM depicts evolution of the channel over a pe-
riod (block) of time. Using time-multiplexed (TM) training,
in [2], a subblock-wise tracking approach based on a CE-
BEM for the channel and an AR model for the BEM coeffi-
cients was proposed. This approach outperforms the symbol-
wise AR model-based approach in fast-fading environments.
In [3], decision-directed tracking of CE-BEM-based doubly-
selective channels was proposed based on the subblock track-
ing approach of [2]. The approaches of [2, 3] assume that
each BEM coefficient follows a first-order AR process, which
is not necessarily true for a “real-world” channel, and this as-
sumption possibly incurs modeling error in estimation. To cir-
cumvent this problem, an adaptive channel estimation scheme
with no a priori model for the BEM coefficients was proposed
in [4], where two finite-memory adaptive filtering algorithms,
the exponentially-weighted and the sliding-window recursive
least-squares (RLS) algorithm, are considered for subblock-
wise channel tracking.
In this paper, we propose an RLS decision-directed ap-

proach to track the channel and to detect information symbols.
It is based on the exponentially-weighted RLS (EW-RLS) al-
gorithm of [4] and the decision-directed tracking proposed
in [3]. Decision-directed channel tracking using a polyno-
mial BEM has been investigated in [5], where the BEM co-
efficients are updated via the RLS algorithm within a sliding

This work was supported by NSF under Grant ECCS-0823987.

window. Decision-directed channel estimation using Kalman
filtering and polynomial or CE-BEM for OFDM systems has
been explored in [6, 8]. The contributions [5, 6, 8] consider
block-by-block updating and/or a priori stochastic models for
BEM coefficients, whereas our decision-directed scheme up-
dates the BEM coefficients much more frequently and without
using any “arbitrary” model for variations of the BEM coeffi-
cients.
Notation: Superscripts ∗, T , and H denote the complex

conjugation, transpose, and complex conjugate transpose re-
spectively. IN is the N × N identity matrix, 0M×N is the
M × N null matrix and ⊗ denotes the Kronecker product.
δ (τ) is the Kronecker delta.

2. SYSTEMMODEL
Consider a doubly-selective, single-input multi-output (SIMO),
FIR linear channel withN outputs and discrete-time response
{h (n; l)} (N -column vector channel response at time instance
n to a unit input at time instance n − l). With {s (n)} as
the scalar information sequence, the symbol-rate noisy N -
column channel output vector is given by (n = 0, 1, . . .)

y (n) =

L∑
l=0

h (n; l) s (n− l) + v (n) (1)

where v (n) is zero-mean, white noise, uncorrelated with s (n),
with E{v (n + τ)vH (n)} = σ2

vINδ (τ). In TM training
schemes, s (n) can be either a training or an information sym-
bol.
In CE-BEM [1, 9, 10], over the k′-th block consisting of

an observation window of TB symbols, the channel is repre-
sented as (n = (k′ − 1)TB , (k′ − 1)TB + 1, · · · , k′TB − 1
and l = 0, 1, · · · , L )

h(n; l) =

Q∑
q=1

h(l)
q ejωqn, (2)

where one chooses (q = 1, 2, . . . , Q andK ≥ 1 is an integer)
T := KTB , Q ≥ 2 �fdTTs�+ 1, (3)

ωq :=
2π

T
[q − (Q + 1) /2] , L := �τd/Ts� , (4)

τd and fd are respectively the delay spread and the Doppler
spread, and Ts is the symbol duration. The BEM coeffi-
cients h

(l)
q ’s remain invariant during this block, but are al-

lowed to change at the next block; the functions
{
ejωqn

}
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(q = 1, 2, · · · , Q) are common for every block. IfK ≥ 2, the
Doppler spectrum is over-sampled (therefore the representa-
tion (2) is called over-sampled CE-BEM) [10], compared with
the critically sampled caseK = 1 [1, 9].

3. DECISION-DIRECTED TRACKING
Consider two overlapping blocks (each consisting of TB sym-
bols) that differ by only ms (1 ≤ ms 
 TB) symbols: the
“past” block beginning at time n0, and the “present” block
beginning at time n0 +ms. Thanks to the significant overlap-
ping of the two blocks, one can expect the BEM coefficients
to vary only a little from the past block to the current over-
lapping one. Therefore, rather than estimate h

(l)
q anew at ev-

ery non-overlapping block as in [9], we propose to update the
BEM coefficients every ms (“step-size”) symbols using TM
training and detected symbols. [In the following ŝ(n) denotes
the symbol estimate and s̆(n) denotes the detected symbol.]

3.1. State-Space Modeling using CE-BEM
Stack the BEM coefficients in (2) into vectors

h(l) :=
[
h

(l)T
1 h

(l)T
2 · · · h

(l)T
Q

]T

(5)

h :=
[
h(0)T h(1)T · · · h(L)T

]T (6)

of size NQ andM := NQ (L + 1) respectively. The coeffi-
cient vectors in (5) and (6) of the p-th overlapping block will
be denoted by h(l) (p) and h (p). Again, we emphasize that
the p-th block and the (p + 1)-st block differ by justms sym-
bols. For pms ≤ n < (p + 1) ms, by (1), (2), (5) and (6), the
received signal at time n can be written as

y (n) = ST (n) [IL+1 ⊗ E (n)]
H

h (p) + v (n)

where

E (n) :=
[
e−jω1n e−jω2n · · · e−jωQn

]T ⊗ IN ,

S (n) := [s (n) s (n− 1) · · · s (n− L)]
T ⊗ IN .

Further defining

Ci (p) := ST (pms + i) [IL+1 ⊗ E (pms + i)]
H

, (7)

C (p) :=
[
CT

0 (p) CT
1 (p) · · · CT

ms−1 (p)
]T

, (8)

we have
yms (p) = C (p)h (p) + vms (p) (9)

where yms (p) :=

[
yT (pms) yT (pms + 1) · · · yT ((p + 1) ms − 1)

]T

and vms (p) is defined likewise. Using TM training or de-
tected symbols in C (p), our objective is to devise an RLS
scheme for estimating h(p).

3.2. Exponentially-Weighted RLS Tracking
Based on (9), we can apply exponentially-weighted regular-
ized RLS (EW-RLS) algorithm [11, Chapter 12] to track an
unknown h (p). Choose h to minimize the cost function

λp+1β ‖h‖2 +

p∑
i=0

λp−i ‖yms
(i)−C(i)h‖2 (10)

where β > 0 is a regularization parameter and 0 < λ < 1 is
the forgetting factor. Mimicking [11, Algorithm 12.3.1] (see
also [4]), EW-RLS tracking comprises the following steps:
1) Initialization: ĥ (−1) = 0M×1 and P (−1) = β−1IM

2) RLS recursion: For p = 0, 1, · · ·
Γ(p) = λINms

+ C(p)P(p− 1)CH(p),

G(p) = P(p− 1)CH(p)Γ−1(p),

ĥ(p) = ĥ(p− 1) + G(p)
[
yms

(p)−C(p)ĥ(p− 1)
]
,

P(p) = λ−1 [IM −G(p)C(p)]P(p− 1),

where ĥ (p) denotes the estimate of h (p) given the ob-
servations {yms

(0) ,yms
(1) , · · · ,yms

(p)}.
After RLS recursion for every p, we can generate the channel
by the estimated ĥ (p) via the CE-BEM (2).

3.3. Channel Prediction
We employ a DFE [12] with equalization delay d > 0 to
equalize the estimated channel at the receiver. Its output sym-
bol decisions are used as a pseudo-training. We need to “pre-
dict” the channel up to time n to obtain the detected symbol
s̆ (n− d) at the DFE. We use the “current” BEM coefficient
vector estimate in the CE-BEM (2) to predict the channel
ĥ(n; l) for values of n as needed, i.e., the channel estimates
in our receiver are given by

ĥ(n; l) = E
H(n)ĥ(l)(p), (11)

for n = pms, pms + 1, · · · , (p + 2)ms + d − 1 where the
definition of ĥ(l) (p) is similar to (5) and ĥ(l) (p) is based on
observations up to time n = (p + 1)ms − 1.

3.4. Minimum Mean-Square Error (MMSE)-DFE
Using the estimated channel, the symbol decisions are made
by an FIR MMSE-DFE [12]. Given the lengths of the feed-
forward (FF) and feedback (FB) filters as lf and lb, respec-
tively, the estimate of the information symbol ŝ(n− d) is ob-
tained by combining the outputs of FF and FB filters and can
be written as

ŝ (n− d) =

lf−1∑
m=0

fT
m (n)y (n−m)−

lb∑
k=1

bk (n) s̆ (n− d− k)

(12)
where N × 1 fm (n)’s and scalar bk (n)’s are the taps of FF
and FB time-varying filters at time n, and s̆ (n− d− k) is the
hard decision of ŝ (n− d− k). The estimate ŝ (n− d) is also
fed into the quantizer to obtain the symbol decision s̆ (n− d).
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Stack the inputs of the FF filter at time n as

yf (n) :=
[
yT (n) yT (n− 1) · · · yT (n− lf + 1)

]T

and also define vf (n) likewise. By (1), we have

yf (n) = H (n) sf (n) + vf (n) (13)

where H (n) :=⎡
⎢⎣
h (n; 0) · · · h (n;L)

. . . . . . . . .
h (n− lf + 1; 0) · · · h (n− lf + 1;L)

⎤
⎥⎦

sf (n) := [s (n) s (n− 1) · · · s (n− lf − L + 1)]
T

.

Further define

sb (n) := [s̆ (n− d) s̆ (n− d− 1) · · · s̆ (n− d− lb)]
T

.

Since {s (n)} is i.i.d. with variance σ2
s , from (13) we have

Rss (n) := E
{
sb (n) sH

b (n)
}

= σ2
sI(lb+1),

Rsy (n) := E
{
sb (n)yH

f (n)
}

= σ2
sΦHH (n) ,

Ryy (n) := E
{
yf (n)yH

f (n)
}

= σ2
sH (n)HH (n) + σ2

vINlf

where Φ :=
[
0(lb+1)×d Ilb+1 0(lb+1)×(lf +L−d−lb−1)

]
.

Let f (n) and b (n) denote the vectors of time-varying
taps of FF and FB filters,

f (n) :=
[
fT
0 (n) fT

1 (n) · · · fT
lf−1 (n)

]T
,

b (n) := [1 b1 (n) b2 (n) · · · blb (n)]
T

.

Assuming the decisions {s̆ (n)} are correct and equal to {s (n)},
the FF and the FB time-varying filters of the MMSE-DFE are
given by [12]

bMMSE (n) = R−1
δ e0/e

T
0 R−1

δ e0, (14)
fMMSE (n) = R−1

yy (n)RH
sy (n)bMMSE (n) , (15)

where e0 := [1 0 0 · · · 0]
T ,

Rδ := Rss (n)−Rsy (n)R−1
yy (n)RH

sy (n)

= Φ

[
1

σ2
v

H (n)HH (n) +
1

σ2
s

INlf

]
−1

ΦH .

Using (14) and (15) in (12), we have the symbol estimate
{ŝ (n− d)}. Since the “true” channel response {h (n; l)} is
not available at the receiver, we use the channel estimates
{ĥ (n; l)} obtained by (11) to design the MMSE-DFE. In or-
der to compensate for the channel estimation errors in (13),
for the simulations presented in Sec. 4 we increased the vari-
ance of v (n) in (13) from σ2

v to σ2
v + 0.01σ2

s .

4. SIMULATION EXAMPLES
We assume h (n; l) is zero-mean, complex Gaussian, and spa-
tially white with E

{
h (n; l)hH (n; l)

}
= σ2

hIN . We take
L = 2 (3 taps) in (1), and σ2

h = 1/ (L + 1). For differ-
ent l’s, h (n; l)’s are mutually independent and satisfy Jakes’
model. To this end, we simulate each single tap following
[13]. We consider a communication system with carrier fre-
quency of 2GHz, data rate of 40kBd (kilo-Bauds), therefore
Ts = 25μs, and a Doppler spread fd = 400Hz (fdTs =
0.01). The additive noise is zero-mean complex white Gaus-
sian. The (receiver) SNR refers to the average energy per
symbol over one-sided noise spectral density.
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Fig. 1. NCMSE vs SNR, under fdTs = 0.01,mb = 100 or 40 with
QPSK information symbols.

We evaluate the performances of various schemes by con-
sidering their normalized channel mean square error (NCMSE)
and bit error rate (BER). For TN received symbols, the NCMSE
is defined as

NCMSE :=

∑Mr

i=1

∑TN−1
n=0

∑L
l=0

∥∥∥ĥ(i) (n; l)− h(i) (n; l)
∥∥∥2

∑Mr

i=1

∑TN−1
n=0

∑L
l=0

∥∥h(i) (n; l)
∥∥2

where h(i) (n; l) is the true channel and ĥ(i) (n; l) is the esti-
mated channel at the i-th Monte Carlo run, among total Mr

runs. In each run, an “initialization” training mode of 200
BPSK symbols is followed by a decision-directed mode of
4000 QPSK symbols (TN = 4000). All the simulation results
are based on 500 runs, and we consider the performances dur-
ing the decision-directed mode only. In the decision-directed
mode, training sessions are also periodically sent to facilitate
the EW-RLS tracking. The TM training scheme of [9], which
is optimal for channels satisfying critically-sampled CE-BEM
representations, is adopted. In [9] the block of TB symbols
is segmented into subblocks of equal length of mb symbols
consisting of an information session ofmd symbols and a suc-
ceeding training session ofmt symbols (mb = md+mt). The
training session contains an impulse guarded by zeros (silent
periods), which for a channel with L + 1 taps has the struc-
ture [01×L γ 01×L], γ > 0; therefore, mt = 2L + 1 = 5
symbols are devoted for training and the remaining md =
mb −mt are available for information symbols. We assume
that each information symbol has unit power, while in every
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training session, we set γ =
√

2L + 1 =
√

5 so that the aver-
age power per symbol in the training sessions is equal to that
in the information sessions.
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Fig. 2. BER vs SNR, under fdTs = 0.01, mb = 100 or 40 with
QPSK information symbols.

We compare the following three schemes:
1. Subblock-wise EW-RLS algorithm of [4] with β = 1.
Formb = 40 and 100, we take λ = 0.5 (see [4]). In the
figures, this scheme is denoted by “SB”.

2. The proposed decision-directed tracking scheme with
step size ms in the EW-RLS tracking with β = 1. We
take the forgetting factor λ = 0.92, 0.96 and 0.98 for
ms = 4, 2 and 1 respectively. In the figures, our ap-
proach is denoted by “DD”.

3. Perfect symbol decisions are used as training for RLS
channel tracking with step size ms = 2 and β = 1.
This scheme provides the baseline for decision-directed
tracking, denoted by “PD” in the figures.

For each of the above schemes, an MMSE-DFE described in
Sec. 3.4 and [3] is employed at the receiver with lf = 8,
lb = 2, and the delay d = 5 symbols.
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Fig. 3. BER vs SNR with N receive antennas, under fdTs = 0.01,
mb = 100 with QPSK information symbols.

In Figs. 1 and 2, the performances of each scheme are
compared fdTs = 0.01 and different SNR’s, for the sub-
block size mb = 40 or 100. For the subblock-wise scheme
of [4], frequent training sessions are required in order to track
the rapid channel variations; SB with larger subblock mb =

100 and hence less training does not work. Due to the er-
ror propagation triggered by incorrect symbol decisions in
DFE, our RLS decision-directed tracking does not perform
well when the SNR is low. As the SNR increases, the pro-
posed scheme performs “closer” to the performance of the
perfect decision-directed channel tracking scheme. Since the
BEM coefficients are updated every ms symbols in our ap-
proach, a “finer” channel tracking can be obtained by reduc-
ing step size ms although the computational complexity in-
creases. In Fig. 3 the three schemes are evaluated with mul-
tiple receive antennas (N = 2 or 3), under fdTs = 0.01 and
different SNR’s, for the larger subblock size mb = 100. We
take the step size ms = 2 for the decision-directed and per-
fect decision-directed schemes. The subblock-wise approach
of [4] is still inadequate, but our RLS decision-directed track-
ing scheme shows significant enhancement with higher N .
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[13] T. Zemen and F. Mecklenbräuker, “Time-variant channel es-
timation using discrete prolate spheroidal sequences,” IEEE
Trans. Signal Proc., vol. 53, pp. 3597-3607, Sept. 2005.

2692


