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ABSTRACT

Pilot-aided channel estimation for multi-carrier systems can be sig-
nificantly improved by exploiting time and frequency correlations
between the channel frequency response coefficients. But in prac-
tice, the knowledge of channel correlation function is not accurately
available, thereby necessitating the need of an estimator that em-
ploys a fixed correlation function and is robust to mismatches with
the actual one. While the maximally robust channel estimator for
multi-carrier systems for the case of an infinite number of observa-
tions is well known for almost a decade, the one for the case of a
finite number of observations has been only recently proposed. We
extend the proposed maximally robust estimator to the practical case
of small finite dimensional pilot grids by taking into account the grid
edge effects. This paves the way for application of the estimator to
practical systems such as 3G LTE. Simulation results for an LTE
uplink system under different transmission scenarios demonstrate
the superiority of the proposed maximally robust estimator over the
heuristic one by as much as 1.35 dB in terms of the coded BER.

Index Terms— Robust channel estimation, Minimax optimiza-
tion, Multi-carrier systems

1. INTRODUCTION

Maximum Likelihood (ML) based channel estimation is one of the
simplest pilot-aided channel estimation technique in multi-carrier
systems. Improved estimation performance can be obtained via 2-D
MMSE channel estimation by taking into account the correlations
along time and frequency that exist among the neighbouring Channel
Frequency Response (CFR) coefficients. However, in most practical
wireless/cellular multi-carriers systems, a 2-D MMSE channel esti-
mator based on the true underlying channel correlation sequence is
hard to realize because of at least one of the following three reasons:
First, the MAC layer scheduler often changes the assigned block of
sub-carriers to each user, thereby complicating the task of channel
correlation function estimation. Second, the estimation of the corre-
lation function itself incurs additional computational complexity and
last but not the least, an inaccurate estimate of the correlation func-
tion may lead to an uncontrolled degradation in terms of channel
estimation MSE with no bound on the worst case performance.

Owing to the challenges associated with the 2-DMMSE channel
estimation based on the true channel correlation function, it is often
desirable to have the estimator based on a fixed, robust choice of
channel correlation function. However, any mismatch between the
true and the assumed correlation sequence would lead to degradation
in estimationMSE, so a natural candidate for the fixed correlation se-
quence is the one that minimizes this degradation. Such an estimator
promises the least worst case estimation MSE [1, 2] and therefore
gets the name of Maximally Robust (MR) channel estimator.

While the MR channel estimator for multi-carrier systems for
the case of an infinite number of observations is well known for al-
most a decade now [3, 4], the 2-D MR estimator or its underlying
Least Favorable (LF) correlation sequence for the case of a finite
number of observations has been proposed only recently in our paper
[5]. The proposal is based on the minimax optimization over channel
correlation sequences belonging to a particular uncertainty class.

In this paper, we apply the proposed MR 2-D MMSE channel
estimator to a practical multi-carrier system, extend it to the case
of small finite dimensional pilot grids by taking into account the
grid edge effects, and compare the performance of the MR estimator
with that of heuristic robust estimator [3]. After an intuitive formu-
lation of the problem under consideration in Section 2, we briefly
review the robust 2-D MMSE estimator for an infinite number of pi-
lot observations in Section 3 and show that an estimator based on
a rectangular Doppler Spectrum (DS) and a uniform Power Delay
Profile (PDP) leads to the best worst-case performance in this sce-
nario. In contrast, we show in Section 4 that being constrained on
a finite number of observations along time and frequency, the sinc
based heuristic correlation function, mentioned above, is no longer
maximally robust, rather we end up in a semidefinite optimization
problem in terms of pilot grid and estimation parameters. The so-
lution of the semidefinite program leads to the LF 2-D correlation
sequence that can be finally used to compute the maximally robust
2-D MMSE estimator. We conclude the paper in Section 5 with a
performance analysis of the two robust estimators in terms of BER
and throughput for a practical multi-carrier system.

Notation. The operators E[•], | • |2, (•)∗, (•)H, vec(•) stand for
expectation, absolute value square, complex conjugate, hermitian
and vectorization respectively, while ι denotes the imaginary unit.

2. PROBLEM FORMULATION
We consider a typical multi-carrier system with pilot symbols dis-
tributed over the time-frequency grid in a periodic manner as shown
in Fig. 1. The total number of system sub-carriers is denoted
by N . Pilot spacings along time and frequency are labeled with
ΔT and ΔF respectively. It is interesting to point out here, that
such rectangular aligned pilot grids are found in many cellular
standards like WiMax and LTE systems [6].

Fig. 1. Example pilot grid with time along horizontal and frequency
along vertical direction. Blue squares represent pilot positions so
that ΔF = 1 andΔT = 5 in this illustration.
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As a special case of estimation, the problem that we consider
here is the one of finding a robust 2-D MMSE channel interpolation
filter given the channel estimates at pilot positions.1 Thus, we as-
sume the knowledge of LS channel estimates at pilot positions and,
intuitively speaking, look for a 2-D linear filter that performs an opti-
mum weighted combination of the available pilot channel estimates
to form an estimate of the channel at the selected data positions of
interest. The prime challenge, as already explained, is the lack of
knowledge of the channel correlation sequence. Hence we pursue a
search to find the LF correlation sequence that shall be used for the
robust estimation performance.

We now characterize the uncertainty class UrH
, to which a can-

didate correlation sequence belongs, in terms of practical transmis-
sion parameters. We note that the uncertainty class contains only
the set of correlation sequences having band-limited spectra for both
the time and the frequency correlation. The highest frequency com-
ponent in the time correlation spectrum is given by the maximum
Doppler frequency fd,max. Normalizing it w.r.t the symbol duration
Tb = 1/fb, we note that the maximum angular frequency in the
spectrum of the time correlation sequence is

ωt,max = 2π (fd,max/fb) , (1)
Arguing under the duality concepts of Doppler spread and coher-
ence time v.s. delay spread and coherence bandwidth, the analogous
relationship for the frequency correlation spectrum can be given as

ωf,max = 2π (L/N) , (2)
where L denotes the maximum length of channel impulse response
in taps, which in our context corresponds to the cyclic prefix length.
An important distinction from the time correlation spectrum is that
the frequency correlation spectrum is one-sided.

3. ROBUST ESTIMATOR FOR AN INFINITE NUMBER OF
OBSERVATIONS

Given an infinite dimensional pilot grid with Hf,t denoting CFR at
f -th frequency and t-th time index andH0,0 being the reference pilot
CFR, the available pilot CFR estimates can be written as

H̃iΔF,jΔT = HiΔF,jΔT+ηiΔF,jΔT (3)
for all integers i, j. The observation noise ηi,j is assumed to be white
gaussian with variance σ2

η . The estimate of data CFRs Hf,t can be
expressed as

Ĥf,t =
∞∑

i=−∞

∞∑
j=−∞

cf−iΔF,t−jΔTH̃iΔF,jΔT (4)

where ci,j denote the 2-D estimator coefficients. Under the orthog-
onality principle to minimize the estimation MSE, the estimator co-
efficients shall be chosen such that

C(ωf, ωt) =
R(ωf, ωt)

R(ωf, ωt)/Δ + σ2
η

(5)

where Δ = ΔFΔT and C(ωf, ωt) =
∑

i

∑
j ci,je

ιωfieιωtj denotes
the filter spectrum, while R(ωf, ωt) =

∑
i

∑
j rH(i, j)eιωfieιωtj

denotes the channel correlation spectrum, with the CFR correlation
sequence2 rH(i, j) = E[Hf,tH

∗
f+i,t+j]. Let ε(CMMSE(R), R̃) de-

note the MSE attained in case of a mismatch between the assumed
spectrum R(ωf, ωt) and the actually encountered correlation spec-
trum R̃(ωf, ωt), then this MSE can be decomposed as [3, 4],

1Nevertheless, as we will see in Section 4, the underlying principle of
finding the least favorable 2-D correlation sequence can also be obviously
applied to the problems of robust MMSE channel estimation and prediction.

2Wide sense stationarity of the random process Hf,t is assumed through
out the paper so that the correlation function is independent of index f and t.

ε(CMMSE(R), R̃) = ε(CMMSE(R̃), R̃) + εΔ(R, R̃) (6)
where εΔ(R, R̃) term can be interpreted as the additional MSE
penalty due to mismatch and is given as,

εΔ(R, R̃) =
σ4

ηSΔ

(2π)2

[
1

S

∫ ∫
D

R̃(ωf,ωt)
Δ

+ σ2
η

R(ωf,ωt)
Δ

+ σ2
η

dωfdωt − 1

]
(7)

with S =
∫ ∫

D
1 dωfdωt. It can be easily shown now that if the es-

timator is designed w.r.t a rectangular (flat) correlation spectrum, i.e.
R(ωf, ωt) = Rrect being (2π)2/S for (ωf, ωt) ∈ D and zero else-
where, then for every bandlimited correlation spectrum R̃(ωf, ωt)

that satisfies the L1 bound: 1/(2π)2
∫ ∫

D
R̃(ωf, ωt) dωfdωt = 1,

the additional MSE penalty disappears i.e. εΔ(Rrect, R̃) = 0. This
astonishing result implies that given an infinite number of observa-
tions, a 2-D MMSE estimator based on the rectangular correlation
spectrum not only leads to robust performance in case of a mismatch
but also the degradation in MSE due to mismatch stays at zero.

4. ROBUST ESTIMATOR FOR A FINITE NUMBER OF
OBSERVATIONS

In search for the MR estimator, we now restrict ourselves to the case
of a finite number of pilot observations. Let NT and NF denote the
number of pilot channel estimates, along the time and frequency di-
rection respectively, to be employed for estimation and assume fur-
ther that these observations lie equally on both sides of the current
data position of interest. Thus, we have a fixed size rectangular slid-
ing window around the current position encompassing all relevant
Channel Frequency Response (CFR) coefficients. The window is
shown in Fig. 1 for NT = 2 and NF = 3 around the crossed data
position. We label this window of CFR coefficients via a matrix
H ∈ C

((NF−1)ΔF+1)×((NT−1)ΔT+1). Using left and right selection
matrices Sf and St of appropriate dimensions, a matrix containing
only pilot CFRs can be extracted from H and then we make use of
the vec(•) operator to get hp = vec (SfHSt) ∈ C

NTNF as the pilot
CFR vector. Taking into account the pilot channel estimation errors,
the observation vector i.e. the LS estimate of pilot CFR coefficients
reads as

h̃p = hp + η, (8)
where η ∈ C

NTNF denotes the pilot channel estimation error vector.
Now withwH ∈ C

1×NTNF denoting the vector containing 2-D filter
coefficients3, we express the estimation MSE, E[|Hf,t − Ĥf,t|

2], as

ε(w, {rH(i, j)}) = rH(0,0)+ w
H(

Rhp+Rη

)
w − w

H
rhp− r

H
hpw,

(9)
withRhp=E

[
hph

H
p
]
,Rη=σ2

ηINTNF and rhp=E
[
hpH

∗
f,t

]
∈ C

NTNF .
Finally, the minimization of the MSE w.r.t the filter coefficients
yields the well known MMSE solution,

wMMSE =
(
Rhp + Rη

)−1
rhp , (10)

leading to the minimum MSE attained (cf. Eq. 9)
ε(wMMSE, {rH(i, j)}) = rH(0,0)− r

H
hp

(
Rhp+Rη

)−1
rhp (11)

4.1. Minimax optimization setup
We are ready now to pose the problem of finding theMaximally Ro-
bust (MR) 2-D estimator in a minimax optimization framework. In-
tuitively speaking, we first maximize the MSE (cf. Eq. 9) over the
set of all valid 2-D correlation sequences {rH(i, j)} ∈ UrH

to arrive

3To be more precise, the notation wf,t should be used since the problem
structure makew a function of the current position for f = 0, 1, . . . ΔF− 1

and t = 0, 1, . . . ΔT − 1. But we omit the subscripts for notational conve-
nience and remark thatw is indeed shift-variant.
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at the worst case scenario and then minimize the resultant MSE via
optimization for the filter to finally arrive at the MR estimator, i.e.

min
w∈C

NTNF
max

{rH(i,j)}∈U1
rH

ε(w, {rH(i, j)}), (12)

where U1
rH

⊂ UrH
denotes the set of all 2-D channel correlation se-

quences with bandwidth restrictions of ωt,max and ωf,max on their time
and frequency spectra, respectively and additionally with a bounded
L1 norm, i.e. rH(0, 0) ≤ β. We now employ a theorem [7, 8] on the
equivalence of finite dimensional minimax and max-min problems.

Theorem 1. Given the estimate of θ from observation γ as θ̂ = wγ ,

with the unknown covariance matrixK =

[
Rγγ Rγθ

Rθγ Rθθ

]
belonging

to a convex & compact uncertainty class K, then the two problems
min

w

max
K∈ K

E[‖θ − θ̂‖2
2]

max
K∈ K

min
w

E[‖θ − θ̂‖2
2],

have identical solutions, i.e. the Least Favorable covariance matrix
K∗ ∈ K and the corresponding estimate θ̂∗ form a saddle point.

Consequently, given that the prerequisites are fulfilled, the original
minimax problem in (12) can be reformulated into the equivalent
max-min problem,

max
{rH(i,j)}∈U1

rH

min
w∈C

NTNF
ε(w, {rH(i, j)}). (13)

In essence, the problem of finding the maximally robust estimator is
casted into the one of finding the Least Favorable (LF) 2-D correla-
tion sequence. Note that the minimization problem in (13) is nothing
else than the conventional MMSE optimization problem leading to
the following residual problem (cf. Eqs. 10 and 11),

max
{rH(i,j)}∈U1

rH

rH(0, 0) − r
H
hp

(
Rhp + Rη

)−1
rhp . (14)

Thus, we arrived from a minimax optimization problem down to a
pure maximization problem. Since the objective function in (14) is
monotonically increasing in rH(0, 0), the maximization is reached
once rH(0, 0) = β, so that we actually need to minimize the sub-
tractor over {rH(i, j)} ∈ Ũ1

rH
where Ũ1

rH
is identical to U1

rH
ex-

cept that rH(0, 0) = β. Furthermore, transforming the problem
into epigraph notation [9, p. 75] by introduction of a slack variable t
and then employing the Schur complement positive semidefiniteness
theorem, the optimization problem reduces to [5],

min
t,{rH(i,j)}∈Ũ1

rH

t s.t.
[

t rH
hp

rhp Rhp + Rη

]
� 0. (15)

4.2. Unfolding the uncertainty class constraints
Next we decompose the {rH(i, j)} ∈ Ũ1

rH
constraint into indi-

vidual analytical constraints. The positive semidefiniteness prop-
erty of the finite length correlation sequence can be expressed in
terms of positive semidefiniteness of the channel correlation matrix,
RH = E

[
vec(H) vec(H)H

]
. In order to incorporate constraints

on the bandwidths of time and frequency correlation sequence, we
use a theorem [10] on the existence and uniqueness of band-limited
positive semidefinite extensions.
Theorem 2. A positive semidefinite sequence {x(m)}M

m=−M has a
positive semidefinite extension band-limited to [ωl , ωh], iff

x̌(m) =eι(ωh+ωl)/2x(m − 1) − 2 cos((ωh − ωl)/2)x(m)

+ e−ι(ωh+ωl)/2x(m + 1)

evaluated atm = 0, 1, . . . , M−1 forms aM×M positive semidef-
inite Toeplitz matrix.

To this end, bandlimitedness of time and frequency correlation
sequences can be assured by positive semidefinite constraints on
the Toeplitz matrices RT and RF constructed from the filtered
sequences [5]. Thus the uncertainty class constraint can be equiva-
lently described by following positive semidefiniteness constraints,
{rH(i, j)} ∈ Ũ1

rH
⇔ RH � 0, RT � 0, RF � 0, rH(0, 0) = β

(16)
4.3. Final semidefinite optimization problem
The overall optimization problem can now be posed as (cf. Eq. 15,16)

min
t,{rH(i,j)}

t s.t.
[

t rH
hp

rhp Rhp + Rη

]
� 0, rH(0, 0) = β,

RH � 0, RT � 0, RF � 0. (17)

Thus, we arrive at a minimization problem with a linear cost func-
tion, an equality constraint, and a few positive semidefiniteness con-
straints. As such, the problem can be solved via any semidefinite
problem solver like SeDuMi [11]. The solution of this problem
yields the LF 2-D CFR correlation sequence {rLFH (i, j)}with respec-
tive bandwidth constraints. This LF correlation sequence can then be
used for the computation of the maximally robust (MR) 2-D MMSE
estimation filter coefficients, i.e.

w
MR
MMSE =

(
R
LF
hp + Rη

)−1

r
LF
hp , (18)

with rLFhp and RLF
hp as defined earlier. The superscripts (•)LF empha-

size that they are based on the optimized LF correlation sequence.

4.4. Computational complexity
Unlike the case of heuristic robust estimator [3], the maximally ro-
bust estimator does not have an explicit expression for the underlying
least favorable 2-D correlation sequence, rather the sequence results
from the solution of the semidefinite optimization problem in (17).
This means an added computational burden, but the solution needs
to be obtained only once for a given set of pilot grid and estimation
parameters. Precisely speaking, the solution depends only on the
pilot spacings ΔT and ΔF, the number of observations NT and NF,
and the observation noise power. Thus, the LF correlation sequence
or the corresponding filter coefficients can easily be precomputed
offline and stored with parameterization in terms of SNR.

4.5. Incorporating edge effects
Aiming at a practically feasible robust estimator, we constrained our-
selves in Section 4 to the case of a finite number of observations
along both the time and the frequency direction. A related but not
identical constraint that must be additionally taken into account to
ensure applicability of the estimator to practical systems, is the finite
dimensionality of the pilot grid. This implies the existence of edge
effects, i.e. there are regions on the corners of time-frequency grid
(shaded portions in Fig. 1) where we no longer have enough obser-
vations on one side of the data position of interest and all such grid
edge positions require a special treatment. This calls for the formu-
lation of separate optimization problems for each of the unique edge
positions, which renders the entire process of determining the robust
estimator or the underlying LF correlation sequence, cumbersome
and computationally expensive.

A simulation based analysis however, suggests a simpler yet an
efficient solution to handle these special edge positions. To this end,
we change the problem formulation for the edge positions to have
an unequal number of observations on both sides such that still the
total number of observations i.e. NF and NT remain fixed. Next
rather than optimizing individually for the LF correlation sequence
of the edge problems, we propose to simply reuse the LF correlation
sequence optimized for the central position on the grid.
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5. SIMULATION RESULTS

We consider a multi-carrier system with a regular rectangular pi-
lot grid having ΔT = 7 and ΔF = 1. This in fact corresponds
to the LTE Uplink [6] transmission format. More specifically, we
choose the 20 MHz band for various other parameters. The MAC
layer scheduler is assumed to operate on sub-frame level, so we con-
strain ourselves further to a small finite dimensional grid consisting
of two slots only, i.e. we have NT = 2, and we choose NF = 5. We
employ the standard frequency domain MMSE equalizer and a rate
1/3 turbo code to show the overall system performance.

For the sake of clarity, we reiterate that the heuristic estima-
tor refers to a 2-D MMSE estimator based on rectangular Doppler
Spectrum (DS) and uniform Power Delay Profile (PDP) as obtained
in Section 3, while theMaximally Robust (MR) estimator is based on
the LF 2-D correlation sequence obtained as a result of the finite ob-
servation minimax optimization in Section 4. As a reference, we also
consider the performance with ideal channel estimation. The chan-
nel time correlation spectra that we use in our simulations include
the well known Jakes DS or a Bandpass DS with evenly distributed
power at the extreme 10% Doppler frequencies. For the channel
frequency correlation spectra we use the Vehicular-A (Veh-A) and
Typical Urban (TU) standard power delay profiles.

Fig. 2 shows the comparison in terms of coded BER under dif-
ferent transmission scenarios. For QPSK modulation at a speed of
120 kmph with Bandpass DS and Veh-A PDP, we observe a gain of
1.05 dB at the coded BER of 10−3 by employing the maximally ro-
bust channel estimator instead of the heuristic estimator. Similarly
for 16-QAM modulation scheme at 60 kmph with TU PDP and the
standard Jakes DS, a gain of 0.9 dB is achieved at the coded BER of
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Fig. 2. Performance comparison of Heuristic and Maximally Robust
estimators against the performance with ideal channel estimation in
terms of coded BER for different transmission scenarios.

Table 1. Throughput gains of MR estimator over Heuristic estimator

Transmission Scenario Gains at throughput level

80% 95%

QPSK, Veh-A, Bandpass DS, 120kmph 0.50 dB 0.91 dB
16-QAM, TU, Jakes DS, 60kmph 0.08 dB 0.35 dB
64-QAM, Veh-A, Jakes DS, 30kmph 0.16 dB 0.43 dB

10−3 by the MR estimator, while for the 64-QAM modulation with
Veh-A PDP, and Jakes DS the gain increases to 1.35 dB.

In Table 1, we present the gains of MR estimator over the
Heuristic estimator in terms of SNR required to reach a specified
throughput level. Gains of as much as 0.9 dB can be observed at the
95% throughput level in different transmission scenarios.

6. CONCLUSION
The paper discussed the idea of robust 2-D MMSE estimation with
a finite number of available observations. It has been shown that
the heuristic robust estimator based on the rectangular (uniform)
correlation spectrum proposed in [3], is not maximally robust if
the number of observations is finite. The maximally robust es-
timator has been shown to be obtained as a result of a semidef-
inite optimization procedure for finding the least favorable 2-D
correlation sequence under certain constraints. We extended this
MR estimator to the case of small finite dimensional pilot grids
by taking into account the grid edge effects in a computation-
ally efficient manner. Finally the paper presented a simulation
based comparison of the heuristic and the maximally robust es-
timator for a practical multi-carrier system with a small finite
dimensional pilot grid. With different channel correlation spec-
tra simulated, gains of around 1 dB and more in terms of coded
BER and throughput have been shown to be achieved by the MR
estimator for different modulation schemes and terminal velocities.
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