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Abstract—The optimal training sequence for channel estimation in
spatially correlated multiple-input multiple-output (MIMO) orthogonal
frequency-division multiplexing (OFDM) systems has not been found
for an arbitrary signal-to-noise ratio (SNR). Only one class of training
sequences was proposed in the literature in which the power allocation
is given only for the extreme conditions of low and high SNR. Provided
in this paper are (i) a necessary and sufficient condition for the
optimal training sequence together with a convex programming to find
the solution, and (ii) efficient procedures to find the optimal training
sequence. Simulation results confirms the superiority of the proposed
design over the existing one.

Keywords. MIMO-OFDM, MMSE channel estimation, training
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I. INTRODUCTION

In coherent MIMO-OFDM systems, channel state information is

required for data detection at the receiver. In general, the accuracy of

channel estimation directly affects the overall system performance.

When the channels between multiple transmit and receive antennas

are statistically uncorrelated, several channel estimation methods

have been proposed (see, for example, [1], [5]). However, in certain

MIMO systems where the transmit antennas and/or the receive

antennas cannot be placed sufficiently far a part due to the physical

constraints, the MIMO channels are spatially correlated. In such

systems, developing an accurate channel estimation method becomes

a challenging task. To our best knowledge, only the work in [10]

considers channel estimation for spatially correlated MIMO-OFDM

in the following cases

• There is one dominant tap over all other taps. The training

sequences are designed according to the correlation of the

dominant tap only. In essential, the frequency selective fading

MIMO channel is treated as a flat fading one;

• All transmit correlation matrices as scaled by a fixed matrix (see

(13) below;

Both these special cases are analyzed at the extreme scenarios of low

and high signal-to-noise ratio (SNR). The total power is completely

assigned to the best eigen-mode of transmit correlation at the low

SNR, while equi-powers are allocated to all eigen-modes at the high

SNR.

The contributions of this paper are twofold. First, a necessary and

sufficient condition for the optimal training sequence is obtained.

It is shown that the optimization of the training sequence design

can be formulated as a convex programming, which is solvable by

many existing softwares of polynomial complexity. Second, inspired

by our recent results in [8], [7] for flat fading MIMO systems, efficient

procedures for finding the optimal training sequences are developed.

Our analysis and results are supported by computer simulation.

The rest of the paper is organized as follows. Section II presents

the mathematical model of channel estimation for spatially corre-

lated MIMO-OFDM systems and discusses the challenging design

issue. Formulation of the optimal training design based on convex

programming is developed in Section III. Section IV and sections

V describe tractable optimization algorithms to optimize the training

sequences in a particular and general cases of correlation matrices.

Simulation results are provided in Section VI and conclusions are

drawn in Section VII.

Notation: Bold capital and lower case letters denote matrices and

column vectors, respectively. (·)T and (·)H denote transpose and

Hermitian transpose operations, respectively. The symbol ⊗ is used

for the Kronecker product of two matrices and vec(X) denotes the

vectorization operation of matrix X while 〈X〉 is the trace of X.

X ≥ 0 (X > 0, resp.) means X is Hermitian symmetric and positive

semi-definite (positive definite, resp.). In is the identity matrix of

dimension n×n. The expectation operation is E{·}, while CN (0, σ2)
denotes a circularly symmetric complex Gaussian random variable.

Furthermore, [Aij ]i,j=0,1,...,N with matrices Aij means the matrix

with block entries Aij . Analogously, diag[Ai]i=0,1,...,N means the

matrix with diagonal blocks Ai and zero off-diagonal blocks.

II. MIMO-OFDM SYSTEMS AND CHANNEL ESTIMATION

Consider a frequency-selective fading MIMO communication

channel described by the following transfer matrix H(z) =∑L−1

�=0
H�z

−�, where each matrix H� ∈ CMr×Mt represents the

gains of the �th MIMO path. The elements (H�)m,n of H� are

(possibly correlated) circularly symmetric complex Gaussian random

variables that remain unchanged over the period of channel estima-

tion. The spatial correlations between the Mt transmit antennas and

Mr receive antennas have the following Kroneker structure [2]:

H� = R
1/2
r� Hwl R

1/2
t� , � = 0, 1, . . . , L − 1 (1)

where the elements of Hw� ∈ CMr×Mt are i.i.d CN (0, 1), Rt� =

R
1/2
t� R

1/2
t� and Rr� = R

1/2
r� R

1/2
r� are the deterministic symmetric

transmit and receive correlation matrices, respectively.

For the (uncoded) MIMO-OFDM system with N sub-carriers, each

of Mt data sequences is divided into blocks of N symbols. Each

block goes through an OFDM modulator to form an OFDM block

and is transmitted via one transmit antenna. The OFDM cyclic prefix

length is chosen to be longer than the channel order L to avoid

the inter block interference (IBI). By defining WN = e−j2π/N , the

channel transfer function corresponding to the kth sub-channel is

Hf (k) = H(W k
N ) =

L−1∑
�=0

H�W
�k
N , k = 0, 1, . . . , N − 1. (2)

The normalized input-output equation for each sub-carrier is

r(k) =

√
ρ

Mt
Hf (k)s(k) + n(k), k = 0, 1, . . . , N − 1, (3)
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where r(k) = (r0(k), r1(k), . . . , rMr−1(k))T ∈ CMr is the kth

received signal vector, s(k) = (s0(k), s1(k), . . . , sMt−1(k))T ∈
CMt is the transmitted signal vector, and

n(k) = (n0(k), n1(k), . . . , nMr−1(k))T represents additive

white Gaussian noise (AWGN) and it consists of i.i.d CN (0, 1).

In channel estimation, the channel tap matrices

H�, � = 0, 1, . . . , L − 1, or equivalently, the vector

h = (vec(H0)
T , vec(H1)

T , . . . , vec(HL−1)
T )T ∈ CLMtMr ,

are estimated at the receiver based on the received

signals r(k), k = 0, 1, . . . , N − 1 and known transmitted

signals s(k), k = 0, 1, . . . , N − 1, which are called the

training sequences. The optimal training design problem

is to find s(k), k = 0, 1, . . . , N − 1, or equivalently

S = [ s(0) s(1) . . . s(N − 1) ]T ∈ CN×Mt , under the

normalized power constraint 〈SHS〉 =

N−1∑
k=1

||s(k)||2 = NMt, to

optimize some estimation criterion such as the least mean-square

error (LMSE) or minimum mean-square error (MMSE), etc.. This

paper adopts the MMSE criterion and the optimization problem is

formulated in more detail next. First, rewrite (3) as

r =

√
ρ

Mt
M(S)h + n, (4)

where

r =

⎛
⎜⎝

r(0)
r(1)
. . .

r(N − 1)

⎞
⎟⎠ ∈ CNMr , n =

⎛
⎜⎝

n(0)
n(1)
. . .

n(N − 1)

⎞
⎟⎠ ∈ CNMr ,

M(S) [F0S F1S . . . FL−1S ] ⊗ IMr ∈ CNMr×LMtMr (5)

F� = diag{W kl
N }k=0,1,...,N−1, � = 0, 1, . . . , L − 1,

MH(S)M(S) = [(SHFH
� FqS) ⊗ IMr ]�,q=0,1,...,L−1. (6)

Based on the singular value decompositions (SVDs)

Rt� = U�Λ�U
H
� , Rr� = V�Υ�V

H
� , (7)

the correlation matrix of noise n and the channel vector h are Rn =
INMr and Rh =
⎛
⎝

Rt0 ⊗ Rr0 . . . 0
...

. . .
...

0 . . . Rt(L−1) ⊗ Rr(L−1)

⎞
⎠ = UhΛhU

H
h , (8)

where Uh = diag[U� ⊗ V�]�=0,1,...,L−1, and Λh = diag[Λ� ⊗
Υ�]�=0,1,...,L−1. The MMSE estimation of h is thus [4] ĥ =√

ρ
Mt

(
R−1

h + ρ
Mt

MH(S)M(S)
)−1

MH(S)r, and the correspond-

ing MMSE is E(||h−ĥ||2) = 〈(R−1
h + ρ

Mt
MH(S)M(S))−1〉. Thus

the optimal training design is

min
S∈CN×Mt

〈(R−1
h +

ρ

Mt
MH(S)M(S))−1〉 : 〈SHS〉 = NMt. (9)

In general, the above is a very difficult optimization problem. The

next section shows how convex programming can be used to find the

optimal solution for a particular case of correlation matrices.

III. CONVEX PROGRAMMING FOR OPTIMAL TRAINING

SEQUENCES IN THE GENERAL CASE

It follows from (5) and (8) that:

〈(R−1
h +

ρ

Mt
MH(S)M(S))−1〉 = 〈(Λ−1

h +
ρ

Mt
Q(S))−1〉, (10)

where Q(S) = [(UH
� SHFH

� FqSUq) ⊗ (VH
� Vq)]�,q=0,1,...,L−1..

The following conditions have been stated in [10] as necessary

conditions for the optimality of a solution S of (9):

UH
� SHSU� is diagonal, � = 0, 1, . . . , L − 1, (11)

SHFH
� FmS = 0 when 0 ≤ � �= m ≤ L − 1. (12)

In general, (11)-(12) are a system of nonlinear equations where the

number of equations may excess the number of unknowns and thus

there is no guarantee for its feasibility. The interesting question

is “how rich is the feasible solution class?”. In this respect, [10]

addresses the case when all the transmit correlation matrices Rt�

are scaled by a fixed matrix R = UΛtU
H with unitary matrices

U ∈ CMt×Mt ,V� ∈ CMr×Mr and diagonal matrices Λt� and Λr�,

i.e.,

Rt� = σ�R, � = 0, 1, . . . , L − 1. (13)

In this special case, U� are the same as in (11).

Furthermore, condition (12) implies that S = QX̄,Q ∈
CN×Mt , X̄ ∈ XMt×Mt , where Q ∈ CN×Mt is constructed from

Mt columns qi ∈ CN , i = 1, . . . , Mt of an unitary matrix, which

is pre-chosen according to [5] to satisfy

qH
i Fm−�qj = 0 for i, j = 1, 2, .., Mt; 0 ≤ � �= m ≤ L−1. (14)

For instance, when N ≥ LMt such qi can be easily constructed as

in [5], [1].

At the end of this section, it will be seen that (11) and (12) cannot

constitute a necessary optimal condition for (9) for the case of having

different U� in (7).

Our result to correct (11) and (12) is stated in the following

theorem.

Theorem 1: Under the existence of Q that satisfies (14), the

optimization problem (9) in S ∈ CN×Mt is equivalent to the

following optimization problem in X ∈ CMt×Mt :

min
0≤X∈CMt×Mt

L−1∑
�=0

〈(R−1
t� ⊗R−1

r� +
ρ

Mt
X⊗IMr )−1〉 : 〈X〉 = NMt.

(15)

The optimal solution Sopt of (9) is defined from the optimal solution

Xopt of (15) as Sopt = QX
1/2
opt .

One can see that the objective function in (15) is convex in X so

(15) is in fact a convex programming. However, for the demand

of a much faster computation in channel estimation problem, a

specialized convex programming algorithm to find the solution of

(15) is developed in the next sections.

Before closing this section, we shall show that (11) in general

cannot be a necessary optimality condition for (9) by considering the

case of L = 2, Mr = 1, Mt > 2 and U0 and U1 are different

in SVD (7) and Rt0 and Rt1 are not diagonal. This means that U0

and U1 are not rotation matrices1. Without loss of generality, set

Rr1 = 1 and problem (15) is

min
0≤X∈CMt×Mt

[
〈(R−1

t0 +
ρ

Mt
X)−1〉 + 〈(R−1

t1 +
ρ

Mt
X)−1〉

]
(16)

under the constraint 〈X〉 = NMt.The condition (11) requires that

both UH
0 XoptU0 and UH

1 XoptU1 must be diagonal for the optimal

solution Xopt of (16). This can only be fulfilled for Xopt = NIMt .

Obviously, such Xopt is not the optimal solution of (16). By obtaining

a numerical solution of (16), it can be verified that its optimal solution

1A matrix is called rotation if it is unitary and each of its columns has only
one nonzero component.
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does not necessarily satisfy (11). A similar convex programming

problem with no available simplified diagonal structure has been

considered in [11, Theorem 1].

IV. A MORE TRACTABLE OPTIMIZATION FOR A PARTICULAR

CASE OF CORRELATION MATRICES

We consider (15) for the following case

Rt� = UΛ�U
H , � = 0, 1, . . . , L − 1, (17)

of different diagonal matrices Λt� but the same unitary matrix U.

This includes the case stated in (13). Then (15) can be written in the

new variable X̃ = UHXU as follows:

min
0≤X̃∈CMt×Mt

L−1∑
�=0

〈(Λ−1
� ⊗ Υ−1

� + X̃ ⊗ IMr )−1〉 : 〈X̃〉 = NMt.

(18)

For any positive definite matrix X̃, one has

tr{(Λ−1
� ⊗ Υ−1

� + X̃ ⊗ IMr )−1} ≥
tr{(Λ−1

� ⊗ Υ−1
� + diag[X̃(i, i)]i=1,2,...,Mt ⊗ IMr )−1}.

Hence the optimal solution of (18) with only one constraint tr{X̄} =
NMt must be in the diagonal form X̃ = diag(y1, . . . ,yMt). This

means that the matrix optimization problem (18) in the variable X
is equivalent to the following vector optimization problem in y =
(y1,y1, . . . ,yMt)

T ∈ RMt :

min
yi≥0,i=1,2,...,Mt

Mt∑
i=1

fi(yi) :

Mt∑
i=1

yi = NMt, (19)

where fi(yi) =

L−1∑
�=0

Mr∑
j=1

(
λ−1

�i γ−1
�j +

ρ

Mt
yi

)−1

, Λ� =

diag(λ�1, . . . , λ�Mt), Υ� = diag(γ�1, . . . , γ�Mr ), � =
0, 1, . . . , L − 1.

In [10], asymptotic solutions of the above optimization problem were

given for low SNR (i.e., ρ/Mt is small) and high SNR (i.e., ρ/Mr

is large) with equal-power allocations (y1 = y2 = . . . = yMr ). On

the other hand, an efficient procedure to locate the optimal solution

of (19) was developed in [8], [7] by a few iterative “water filling”

steps. The efficiency of the procedure is confirmed by simulation

results presented in Section VI.

Furthermore, there is the following approximation for the optimal

value of the optimization problem (19). Using the fact that the

function (x−1 + a)−1 is concave in scalar variable x > 0, a tight

upper bound for fi(yi) is

fi(yi) ≤ LMr(a
−1
i +

ρ

Mt
yi)

−1, ai :=
1

LMr

L−1∑
�=0

Mr∑
j=0

λ�iγ�j (20)

As an approximated solution to the optimal solution of (19) we take

the optimal solution of the following optimization problem, which is

minimization of an upper bound of the objective function :

min
yi≥0, i=1,2,...,Mt

Mt∑
i=1

1

a−1
i + ρ

Mt
yi

:

Mt∑
i=1

yi = NMt. (21)

The optimal solution of (21) is well known:

yi =
Mt

ρ
max{(ρ/Mt)

1/2μ − a−1
i , 0}, (22)

where μ > 0 is chosen so that

Mt∑
i=1

yi = 1.

In essential, the optimal solution (22) is water-filling based on the

following measure of each eigen-mode i (i = 1, 2, ....Mt): ei =
L−1∑
�=0

Mr∑
j=0

λ�iγ�j , that is in contrast to the solution of [10] with total

power NMt allocated to the mode with the maximum measure ẽi =
L−1∑
�=0

Mr∑
j=0

(λ�iγ�j)
2
. As confirmed by simulation in Section VI, indeed

it is the optimal solution of (19), while the solution of [10] is not.

V. SIMPLIFIED CONVEX OPTIMIZATION WITH CLOSED LOOP

SOLUTIONS

As mentioned, in general there is no available closed loop solution

for the optimization problem (15), so in this section we provide

some tractable approximations for its optimal solution. Firstly, (15)

is equivalently simplified to

min
0≤X∈CMt×Mt

L−1∑
�=0

〈(R−1
t� ⊗Υ−1

� +
ρ

Mt
X⊗IMr )−1〉 : 〈X〉 = NMt.

(23)

We now develop some nontrivial bounds for the objective in (23).

Theorem 2: For the objective function in (23) the following up-

per bound holds true

L−1∑
�=0

〈(R−1
t� ⊗ Υ−1

� +
ρ

Mt
X ⊗ IMr )−1〉 ≤

L〈((
L−1∑
�=0

Rt�)
−1 ⊗ (

L−1∑
�=0

Υ�/L)−1 +
ρ

Mt
X ⊗ IMr )−1〉.

Thus, setting R =
1

L

L−1∑
�=0

Rt�, ΥU =

L−1∑
�=0

Υ�, a upper bound

optimization for (23) is provided by the following optimization

problem

min
0≤X∈CMt×Mt

〈(R−1 ⊗ Υ−1 +
ρ

Mt
X ⊗ IMr )−1〉 : 〈X〉 = NMt.

(24)

With a SVD

L−1∑
�=0

Rt� = LR−1 = UΛUH , Λ = diag(λ1, ..., λMt),

and

L−1∑
�=0

Υ� = Υ−1 = diag(γ1, ...., γMr ); γj =

L−1∑
�=0

γ�j and the

earlier variable change, it can be similarly shown that the optimal

solution of the upper bound minimization (24) must be in the form

X = Udiag(y1, . . . ,yMt)U
H , where y = (y1,y1, . . . ,yMt)

T ∈
RMt is the optimal solution of the vector optimization problem (19)

with fi(yi) =

Mr∑
j=1

(Lλ−1
i γ−1

j +
ρ

Mt
yi)

−1
. As mentioned at the end

of the previous section, the optimal solution can be exactly found

by using the iterative water filling procedure [8], [7]. Like (21), an

approximated solution of the optimal solution of the upper bound

minimization with ai = 1
LMr

λi

Mr∑
j=1

γj =
1

LMr
λi

Mr∑
j=1

L−1∑
�=0

γ�j .

VI. SIMULATION RESULTS

In the simulation the matrices Rt� and Rr� in (1) are defined

in uniform antenna array environment as [2, eq. (4)] [Rt�]m,n =

σ�e
−j2π|n−m|Δt cos(θ̄t�) e−

1
2 (2π|n−m|Δt sin(θ̄t�)σθt�

)2 , [Rr�]m,n =

σ�e
−j2π|n−m|Δr cos(θ̄r�) e−

1
2 (2π|n−m|Δr sin(θ̄r�)σθr�

)2 , where

• Δt = dt/λ (Δr = dr/λ, resp.) is the relative transmit ( receive,

resp.) antenna spacing. dt and dr are the absolute antenna

spacings with wavelength λ = c
fc

of the carrier fc. They are

set equal 1 in all simulation.
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• θ̄t� and θ̄r� are the mean angle of departure from the transmit

array and the mean angle of arrival at the receive array.

• σ2
θtl

and σ2
θrl

are the cluster angle spread perceived by the

transmitter and receiver, respectively, so the actual angle of

transmit (arrival, resp.) is θt� = θ̄t� + θ̂tl (θr� = θ̄r� + θ̂rl,

resp.) with θ̂tl = CN (0, σ2
θt�

) (θ̂rl = CN (0, σ2
θr�

), resp.). They

set equal some specific σθ;

• σ2
� reflects the �-th path channel gain.

It can be seen that large antenna spacing and/or large cluster angle

spread results in low spatial fading correlation and vice versa.

For the first example, L = 5, σθ = 8.6o,

(θ̄t0, θ̄t1, ..., θ̄t(L−1)) = (13o, 13o, 13o, 13o, 13o), θ̄r1..., θ̄r(L−1)) =
(290o, 300o, 315o, 320o, 335o), (σ2

0 , σ2
1 , ..., σ2

L−1) =
(0.3, 0.2, 0.2, 0.15, 0.15), where mean departure angles θ̄t� are

equal so (13) is met and the asymptotic-based result of [10] is still

applied. The Figure 1 demonstrate the MMSE channel estimation

performances of four results: our 2 results (one by the iterative water

filling (IBP) [7] for the solution of the exact minimization problem

(19) and another one by the water filling solution (22) of the upper

bound minimization problem (21)), the asymptotic based solution

[10]) and equi-power allocation. It is clear from there that our results

outperform the other existing results. Moreover, the solution of the

upper bound minimization problem (22) also results in the minimal

MMSE channel estimation as well and so it is preferred because of

less computational load.

For the second example with L = 5, σθ = 8.6o,

(θ̄t0, θ̄t1, ..., θ̄t(L−1)) = (13o, 16o, 20o, 24o, 27o),

(θ̄r0, θ̄r1..., θ̄r(L−1)) = (290o, 3000o, 315o, 329o, 335o),

(σ2
0 , σ2

1 , ..., σ2
L−1) = (0.3, 0.2, 0.2, 0.15, 0.15) as the departure

angles θ̄t� are not equal and (13) is not met, the asymptotic-based

result of [10] is not applied. There is no existing result for this

case except equi-power allocation. The figures 2 show that our

result by accepting the solution (22), performs much better than the

equi-power solution.

VII. CONCLUSIONS

In this paper, we have revisited, raised and resolved some important

technical issues of the MMSE channel estimation and optimal training

design for MIMO-OFDM systems operating over spatially correlated

fading channels. It was shown that Our proposed design of training

sequence outperforms the existing design over the whole range of

SNR.
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