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ABSTRACT

This paper investigates the problem of designing reverse channel
training sequences for a TDD-MIMO spatial-multiplexing system.
Assuming perfect channel state information at the receiver and spa-
tial multiplexing at the transmitter with equal power allocation to the
m dominant modes of the estimated channel, the pilot is designed
to ensure an estimate of the channel which improves the forward
link capacity. Using perturbation techniques, a lower bound on the
forward link capacity is derived with respect to which the training
sequence is optimized. Thus, the reverse channel training sequence
makes use of the channel knowledge at the receiver. The perfor-
mance of orthogonal training sequence with MMSE estimation at
the transmitter and the proposed training sequence are compared.
Simulation results show a significant improvement in performance.

Keywords: Channel estimation, training sequence design, reci-
procity.

1. INTRODUCTION

Over the past decade or so, the use of multiple antennas at both the
transmitter and receiver of a wireless communication system has re-
ceived tremendous attention, as it offers a linear increase in capacity
with the minimum of the number of transmit and receive antennas
[1],[2]. However, much of the gain in capacity is at the cost of per-
fect Channel State Information (CSI) at Receiver (CSIR). CSIR can
be acquired by sending a known training sequence (pilot) from the
transmitter to the receiver. The accuracy of the estimate depends on
the structure and duration of training sequence. It has been shown in
[3] that orthogonal training sequences with training duration equal
to the number of transmit antennas is optimal in an MMSE sense,
when there is no prior knowledge of channel at the transmitter.

It is also well-known that a further gain in capacity is possible
when there is perfect CSI at the transmitter (CSIT) [4] in addition to
CSIR. Channel knowledge at the transmitter can be obtained in two
ways: i) feedback of quantized CSI from the receiver to the transmit-
ter, and ii) training in the reverse link, which we term Reverse chan-
nel training (RCT). Much of the earlier work on CSI feedback has
focussed on the feedback of quantized CSI to the transmitter, and in
particular, the design of a FDD-MIMO spatial multiplexing system
with equal power allocation and quantized CSI feedback was consid-
ered in [5]. Training in the reverse link, on the other hand, is possible
only when the channel is reciprocal, i.e., for Time Division Duplex
(TDD) systems. In this paper, therefore, we consider a TDD-MIMO
system with perfectly reciprocal channels, and allow the receiver to
exploit its channel knowledge in designing the training sequences.
However, reciprocity requires well-calibrated transmit and receive
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RF chain components, which we assume here. Furthermore, in or-
der to isolate the effect of channel estimation quality, we assume
that the receiver has perfect CSI, which is a standard assumption in
quantized CSI feedback related research as well. We also assume
that the transmitter employs the m dominant modes of the estimated
channel with pure spatial multiplexing, i.e., it sends m independent
data streams using the estimated eigenvectors as beamforming vec-
tors [5]. In this scenario, qualitatively speaking, one would expect
that the receiver must allocate the available training power to the m
dominant channel modes based on the gain of each mode, to guar-
antee the best possible estimate of the channel at the transmitter in
terms of maximizing the forward link capacity. One of the key fea-
tures of the proposed training sequence is that the entire knowledge
of the sequence at the transmitter is not required in order to estimate
the channel and hence can dynamically adapt to the varying channel.

The main contributions of this paper are as follows. Using a
fairly general structure on the training sequence, we derive a lower
bound on the forward link capacity with the estimated channel ma-
trix at the transmitter. We then lean on tools from matrix pertur-
bation theory to formulate the training sequence design problem as
an optimization problem, using which the training parameters that
maximize the lower bound on the channel capacity are determined.
Simulation results show that significant performance improvement
can be obtained compared to conventional orthogonal pilot based
training schemes.

The rest of the paper is organized as follows. In Section 2, we
present the system model. The design of training sequence is out-
lined in Section 3. One basic result in perturbation analysis is reca-
pitulated in Section 4. The bound on down-link capacity is derived
in Section 5. Optimization of training sequence is given in Section
6. Numerical results are presented in Section 7. Section 8 concludes
the paper.

We use the following notation in this paper. E[.] denotes ex-
pected value of [.]. Capital letter will be used for matrix and small
letter will be used for vectors. (.)H denotes the transpose conjugate
of a matrix, and |.| denotes the determinant of a matrix or the ab-
solute value depending on the context. Im is the m × m identity
matrix.

2. SYSTEM MODEL

Consider a TDD-MIMO system in which users A and B wish to
communicate with each other. The wireless link between A and B
is assumed to be a quasi-static Rayleigh flat-fading channel. Let
nA and nB be the number of antennas at A and B respectively.
HAB ∈ C

nB×nA and HBA ∈ C
nA×nB represent the channel

from A to B and B to A whose entries are independent and identi-
cally distributed (i.i.d.) zero mean, circularly symmetric complex
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Gaussian CN(0, 1). Due to reciprocity, we assume that HAB =
HH

BA. Then HAB = UΣV H represent the SVD of the channel
matrix where U ∈ C

nB×nB and V ∈ C
nA×nA are eigen-vectors

of HABHH
AB and HH

ABHAB respectively. Let n denote the rank
of HAB . Σ ∈ R

nB×nA contains distinct singular values σ1 >
σ2 >, ..., > σn of HAB . We assume that the channel is full rank
i.e., n = min(nA, nB), which is true with probability one for a
Rayleigh fading channel. The transmission involves training phase
and data phase. During the training phase, user B sends a pilot se-
quence to enable A to obtain (partial) CSI, and during the data phase,
user A transmits data to user B using the estimated channel to con-
struct a precoding matrix. On either of the users, the received signal
Yi ∈ C

ni×T , is
Yi = HjiXj + Wi, i, j ∈ {A, B}, i �= j (1)

where Xj ∈ C
nj×T , j ∈ {A, B} is the signal matrix transmit-

ted from the corresponding user, and T represents the number of
channel uses. The average power constraint at either A or B dur-
ing transmission is E[Tr(XjX

H
j )] ≤ P , where P is the total power.

Wi ∈ C
nj×T represents thermal noise matrix of user i ∈ {A, B}

whose entries are distributed as CN(0, σ2
i ).

Consider the situation where user B has a perfect knowledge of
the channel and A transmits data to B. User B transmits a training
sequence Sτ ∈ C

nB×Tτ of duration Tτ to enable user A to estimate
the channel. The received signal at A, YA ∈ C

nB×Tτ , is given by

YA = HH
ABSτ + WA. (2)

Here, the total power constraint on the training sequence is given by
Tr(SτSH

τ ) ≤ Pτ . User A will make use of YA in (2) to estimate the
channel for spatial multiplexing of data.

3. TRAINING SEQUENCE DESIGN

In this section, we propose a training sequence that attempts to maxi-
mize a lower bound on the capacity of the link from A to B. Since the
spatial multiplexing of data is assumed, user A should know matrix
V whose columns are the eigen-vectors of HH

ABHAB . The equation
governing the data transmission from A to B is given by,

YB = HABV̂sXd + WB , (3)

where Xd ∈ C
m×Td is the matrix of data symbols of dura-

tion Td with the total power constraint given by E[XdXH
d ] ≤

(PdTd/m)Im. Here V̂s ∈ C
nA×m is a matrix containing the first

m columns of V corresponding to the dominant eigen-vectors of
HAB . Its reasonable to assume that m is at most equal to the rank
of HAB , since we do spatial multiplexing of data. The receiver B
processes the received data by pre-multiplying YB by UH ,

ỸB = UHYB = ΣV H V̂sXd + UHWB (4)

The above equation can be viewed as a MIMO system with the ef-

fective channel matrix ΣV H V̂s as seen by the receiver B. At each
symbol time, (4) reduces to

ỹB = ΣV H V̂sxd + UHwB (5)

where ỹB ∈ C
nB×1, xd ∈ C

m×1 and wB ∈ C
nB×1 are received

data, transmitted data and noise vectors respectively. Since the user
A is assumed to employ pure spatial multiplexing, the power con-
straint on xd is given by E[xdxH

d ] = Pd
m

Im. Also, since the user
B has perfect knowledge of the channel, we consider the following
general structure on the training sequence,

Sτ =
√

PτTτUDV H
(6)

where, we restrict D ∈ C
nB×nA to be a diagonal matrix with non-

negative entries. ||D||F = 1 ensures that the training power con-
straint is satisfied. Note that the most general pilot structure would
allow D to be arbitrary matrix satisfying ||D||F = 1, but it will
be shown that the structure proposed in this paper is simple, ana-
lytically tractable and offers a significant performance improvement
compared to existing training schemes. The proposed training se-
quence has training length Tτ = nA. Since the user B has perfect
CSI, the choice of D is made to depend on the current instantiation
of the channel. Therefore, the goal is to set D that maximizes a
lower bound on the down-link capacity. Substituting (6) in (2) and
dividing by

√
PτnA, we get

ỸA = V ΣDV H + W̃A + βInA (7)

where ỸA = YA/
√

PτnA and β > 0 is a regularization term which

ensures that ỸA is a full rank matrix, and W̃A = WA/
√

PτnA. The
full rank condition is necessary for the analysis to follow (cf. Sec.
4), in practical computation, it is in fact superfluous. Also, note that
one can improve the accuracy of estimation by using a Hermitian-

symmetrized version of ỸA. The symmetrizing operation has the
effect of reducing the noise variance by 3dB which is not taken into
account in the analysis. The 3dB reduction in noise power comes

from eliminating the non-Hermitian symmetric part of ỸA. User A
will make an estimate of V by eigen-value decomposition of (7).
This is shown schematically below,

Sτ → ỸA → V̂ Σ̂V̂ H
(8)

We can consider ỸA as the perturbation of V (ΣD + βInA)V H

which is Hermitian symmetric. Notice that due to diagonal the di-
agonal structure on D, knowledge of the training sequence is not
required at A in order to estimate the eigen vectors. The next section
will recapitulate the basic results of perturbation analysis which we
use in this paper.

4. PERTURBATION ANALYSIS

Consider a first-order perturbation of an n × n full-rank Hermitian

symmetric matrix G by an error matrix ΔG to get Ĝ, i.e., Ĝ =
G + ΔG. If the eigen-values are distinct, then the eigen-vector ŝk

of Ĝ can be approximated in terms of eigen-vector sk of G as [6]

ŝk ≈ sk +

n∑
r=1,r �=k

sH
r ΔGsk

λk − λr
sr (9)

where n is the rank of G, λk is the kth largest eigen-value of G. For

k = 1, 2, . . . , n, we have ŝi = Sd̃i where Sn = [s1, . . . , sn] is the
n × n matrix of eigenvectors of G and

d̃i = [Δdi1, . . . , 1, . . . , Δdin]T , (10)

where the ‘1’ is at the ith position, and Δdij is defined as,

Δdij ≈ sH
i ΔGsj

λj − λi
, i �= j. (11)

Since ŝk are orthonormal vectors, normalizing each of d̃i’s and doing
a similar approximation as in [7][8] we get,

Ŝ = S(In + E) (12)

where,

E =

⎛⎜⎜⎜⎝
Δd1 −Δd12 . . . −Δd1n

Δd21 Δd2 . . . −Δd2n

...
...

. . .
...

Δdn1 Δdn2 . . . Δdn

⎞⎟⎟⎟⎠ (13)
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and Δdk ≈ −1

2

n∑
i=1,
i �=k

|Δdki|2 (14)

5. BOUNDS ON CAPACITY

Consider the following equation, which relates V̂ and V

V̂s = V

([
Im

0

]
nA×m

+ Ep

)
(15)

where the nA × m matrix Ep is defined as,

Ep �

⎛⎜⎜⎜⎝
Δd1 −Δd12 . . . −Δd1m

Δd21 Δd2 . . . −Δd2m

...
...

. . .
...

ΔdnA1 ΔdnA2 . . . ΔdnAm

⎞⎟⎟⎟⎠ . (16)

and let vi be the ith column of V and with a slight abuse of notation,
we let

Δdij �

⎧⎨⎩
vH

i W̃Avj

σjdj−σidi
i �= j, 1 ≤ i ≤ n, 1 ≤ j ≤ m

vH
i W̃Avj

σjdj
n + 1 ≤ i ≤ nA, 1 ≤ j ≤ m

(17)

The above equation is obtained by observing that ỸA in (7) is the
perturbation of V ΣDV H +βInA and applying the analysis outlined
in the previous section. Note that the off-diagonal terms are complex
Gaussian. Then, from Lemma (2) in the Appendix, the (i, j)th

non-
diagonal entries have variance equal to σ2

A/(PτnA(σidi − σjdj)
2),

if i �= j, 1 ≤ i ≤ n, 1 ≤ j ≤ m and σ2
A/(pτnAσ2

j d2
j ), if n + 1 ≤

i ≤ nA, 1 ≤ j ≤ m. Using (15) in (5) we get

ỹB ≈ Σ

([
Im

0

]
nA×m

+ Ep

)
xd + w̃B (18)

where w̃B � UHwB ∈ C
nA×1 is the noise vector. Equation (18)

can be written in the following form

ỹB ≈ Σsxd + e (19)

where e � ΣEpxd + w̃B and Σs ∈ R
nB×m contains first m

columns of Σ. The effective noise term e is uncorrelated with the
data vector xd i.e., E[exH

d ] = 0nB×m, where the expectation is

taken with respect to the training noise W̃A, the data noise wB and
the data symbol xd. A capacity lower bound can be obtained by
considering a suboptimal receiver that treats the effective noise as
Gaussian, which is the essence of the following theorem.

Theorem 1 : For the system described by (19), a lower bound on
the ergodic capacity is given by

CL � EΣs

(
log2

∣∣∣∣∣Im + (Pd/m)
ΣH

s Σs

σ2
eff

∣∣∣∣∣
)

, (20)

where,

σ2
eff ≈ Pdσ2

A

PτnAnBm

⎡⎣ m∑
i=1

nA∑
j=1,j �=i

σ2
i

(σidi − σjdj)2

⎤⎦ + σ2
B (21)

and di = Dii, is the ith diagonal component of D and i =
1, ..., min(nA, nB).

Proof : Since E[exd] = 0nB×m, the capacity can be lower bounded
by [3][9],

CΔ = EΣs

(
log2

∣∣∣∣Im +
Pd

m
ΣH

s (Ee[ee
H ])−1Σs

∣∣∣∣) . (22)

Let A � HABV

[
Im 0
0 0

]
nA×nA

V HHH
AB . Then,

log2 |I + cA| = log2

∣∣I + cΣsΣ
H
s

∣∣ for any c > 0. Since HAB is
rotationally invariant, it follows that A is also rotationally invariant,
i.e, Π(ΘA) = Π(A) and Π(AΘ) = Π(A), where Π denotes the
probability distribution of A and Θ is any unitary matrix. Therefore
it follows from [3] that (22) can be further lower bounded to get (20),
where σ2

eff = 1
nB

Ee

[
Tr(eeH)

]
. Substituting for e, we get,

σ2
eff =

Pdσ2
A

Pτ nAnBm
EwA

[
Tr(ΣEpEH

p ΣH)
]
+σ2

B . Further simplifica-

tion is shown in the Appendix.

6. REVERSE TRAINING SEQUENCE OPTIMIZATION

We now wish to choose D that maximizes CL, the lower bound on
the capacity of the link from A to B. The maximization problem can
be stated as

max
{di:di≥0,||D||2

F
=1}

EΣs

(
log2

∣∣∣∣∣I + (Pd/m)
ΣH

s Σs

σ2
eff

∣∣∣∣∣
)

.

which is equivalent to minimizing (21) :

min
di:di≥0,

||D||F =1

m∑
i=1

⎡⎣ n∑
j=1,j �=i

σ2
i

(σidi − σjdj)2
+

nA − n

d2
i

⎤⎦ . (23)

Intuitively, when m = 1 (maximum ratio transmission), we would
expect that user B would put all its training power solely on the
dominant mode of the channel, which is established in the follow-
ing lemma:

Lemma 1 : For a 2× nA MIMO system with m = 1, the optimiza-
tion problem given by (23) has solution d1 = 1, di = 0, ∀i ≥ 2.

Proof: Follows upon substituting m = 1, n = 2 in (23).
Now consider a 2 × nA MIMO system with m = 2. The mini-

mization problem becomes

min
d1,d2≥0,

d2
1+d2

2=1

σ2
1 + σ2

2

(σ1d1 − σ2d2)2
+

(nA − 2)

d2
1

+
(nA − 2)

d2
2

(24)

The solution space is limited to di ∈ [0, 1], but (24) does not have
a closed form solution. However, if, for computational purposes, we
let σ1 
 σ2, we get

min
{d1:d1∈[0,1]}

σ2
1 + σ2

2

σ2
1d2

1

+
(nA − 2)

d2
1(1 − d2

1)
(25)

The solution to (25) is given by

d1 =
√

1 + ρ(nA − 2)

√√√√1 −
√

ρ(nA − 2)

1 + ρ(nA − 2)
, (26)

where ρ � σ2
1/(σ2

1+σ2
2). We can use (26) for choosing d1 and d2 =√

1 − d2
1 as a simple, sub-optimal solution for all values of σ1 and

σ2. In our simulations, we have found that the loss in performance
due to using the sub-optimal solution above relative to using a zero-
finding algorithm that computes the optimal d1 is very small.
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7. SIMULATION RESULTS

The simulation consists of a MIMO-TDD Rayleigh flat fading
channel with spatial multiplexing of data. The noise variances are
assumed to be unity, i.e., σ2

A = σ2
B = 1. The mutual information

for each noise and channel instantiation is evaluated using [5]

C = log2

∣∣∣∣I +
Pd

m
HABV̂sV̂s

H
HAB

H

∣∣∣∣ (27)

The average mutual information is obtained by averaging (27) over
all training noise and channel instantiations. The optimal values of
d1 and d2 are evaluated using (26). Fig. 1 portrays the capacity per-
formance of a 2 × 4 system and a 2 × 3 system. For comparison,
we also plot the performance of orthogonal training with MMSE
channel estimate and a system with perfect CSI. At all training pow-
ers, the proposed sequence outperforms the orthogonal training se-
quence. For example, Pτ = 5dB, the proposed training sequence
offer a training power gain of approximately 5dB. Fig. 2 shows the
percent capacity loss with respect to the number of transmit antennas
nA for a given Pd and Pτ . For any number of transmit antennas the
proposed RCT sequence outperforms the orthogonal training.
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Fig. 1. Capacity vs Pτ in dB for a 2 × 3 and a 2 × 4 system with
Pd = 10dB and m = 2.

8. CONCLUSIONS

We have investigated the problem of reverse channel training in a
TDD-MIMO system whose channel is reciprocal. We have assumed
that the receiver (user B) is aware of the channel and hence can de-
sign a training sequence based on the number of modes used during
down-link data transmission and the channel eigenvalues and eigen-
vectors. We proposed a specific training sequence which allocates
different training powers to different modes. We used tools from
perturbation analysis to derive a lower bound on the down-link ca-
pacity. This lower bound was maximized with respect to the pa-
rameters of the proposed training sequence and the training power
allocation to different modes that maximize the lower bound were
derived. The proposed RCT was compared with orthogonal train-
ing sequence with the same training power and duration. Simulation
results showed a significant improvement in down-link capacity.

9. APPENDIX

Lemma 2 Let vi ∈ C
1×n, i = 1, ..., n be orthonormal vectors. Let

the entries of N ∈ C
n×n be i.i.d. circularly symmetric complex

gaussian CN(0, 1). Then, E[|aij |2] = 1, where aij = viNvH
j .

Proof: Follows directly from the orthonormality of vi.

Proof of (21): Using Tr[AB] = Tr[BA] we can write,
Tr[ΣEwA(EpEH

p )ΣH ] = Tr[ΣHΣEwA(EpEH
p )]. From Lemma

2 and (17), for 1 ≤ j ≤ m, the off-diagonal elements of Ep

are CN(0, σ2
A/(PτnA(σidi − σjdj)

2)) for 1 ≤ i ≤ n and
CN(0, σ2

A/(PτnAσ2
j d2

j )) for n + 1 ≤ i ≤ nA. The result fol-
lows by substituting for Ep and neglecting the diagonal terms
|Δd1|2, |Δd2|2, ... which are higher order terms relative to |Δdij |2.
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Fig. 2. Percent capacity loss vs number of transmit antennas nA for
a system with Pd = 1dB, Pτ = 2dB, nB = 2 and m = 2
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