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ABSTRACT

We consider realizable linear and decision feedback equaliza-
tion (DFE) of frequency selective multiple-input multiple-output
(MIMO) channels in the presence of cochannel interference (CCI).
Equalizers that are optimal in the minimum mean square error
(MMSE) sense are derived with and without zero forcing (ZF) con-
straint. It is shown that all problems can be reduced to H2 optimal
deconvolution, for which a novel algorithm is presented.

Index Terms— MIMO systems, Intersymbol interference,
Cochannel interference, Equalizers, Deconvolution

1. INTRODUCTION

Recently, there has been interest in so called realizable equalization
filters for frequency selective MIMO channels. Realizable filters
obey causality and stability constraints, though they are not neces-
sarily finite impulse response (FIR) filters. Instead it is required that
there is a finite dimensional realization, e.g. as a state space system.
Realizable linear as well as decision feedback equalizers (DFE) for
frequency selective MIMO channels without cochannel interference
(CCI) have already been derived [1, 2, 3]. CCI results from mul-
tiple transmitters using the same frequency, a situation which rou-
tinely occurs, e.g. at cell edges of adjacent cells in mobile networks
[4]. The goal of this paper is to derive realizable linear equalizers
that take CCI into account. This can be seen as an generalization of
the well known interference rejection combining (IRC) for flat fad-
ing channels [5, 4]. Our main result is the optimal realizable linear
equalizer in the minimum mean square error (MMSE) sense with and
without zero forcing (ZF) constraint. When applied to the usual lin-
earization of the DFE, our results directly extend to realizable DFEs
for channels with CCI. We point out that various generalizations of
IRC to frequency selective channels, usually termed spatio-temporal
interference rejection combining, have been derived under FIR re-
strictions (see e.g. [6] and the references therein). Other approaches
to CCI mitigation include space-time block coding and non-linear
equalization [6, 7, 8]. However, there seem to be no results on real-
izable equalization in the presence of CCI.

The paper is structured as follows. In Section 2, we introduce
the system model and problem statement together with some other
preliminaries. In Sections 3, 4 and 5 we consider the four different
equalization problems of the optimal realizable equalizer with and
without ZF constraint in channels without CCI (H2-ZF and MMSE),
the optimal realizable ZF equalizer in channels with CCI (ZF-IRC)
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Fig. 1. System model at time k with transmitted signal uk, inter-
ference uI,k, noise nk, estimation ûk, demodulated signal ũk, and
delay L. The optional feedback path of the DFE is dashed.

and the optimal realizable equalizer in channels with CCI (MMSE-
IRC). We finish the paper with a numerical example that illustrates
the performance of these algorithms and their DFE counterparts in
Section 6.

2. PRELIMINARIES

2.1. Notation and Basic Definitions

We denote the complex numbers by C, the naturals by N, complex
conjugation by (̄·), matrices over C by C

m×n and set C
m := C

m×1.
k, j ∈ N are time indices. For any matrix, tr{·} denotes trace, (·)∗

the conjugate transpose and (·)−1 the inverse. The zero matrix is
denoted by 0, the identity matrix by I . If necessary, the dimensions
of zero and identity matrix are added as subscripts. E[·] is the ex-
pectation operator. Transfer functions are labeled with bold letters.
The H2 norm of a transfer function X(z) =

P∞
k=−∞ Xkz−k is de-

fined by ‖X‖2
2 := 1

2πi

´
|z|=1

tr
˘
X(z)X(z̄−1)∗

¯
dz
z

. X is causal if
Xk = 0 for k < 0. We further say that X is stable, if all poles of X

are contained inside the complex unit circle. X is called realizable,
if it is stable, causal, and the transfer function of a state space system
(see Section 2.4 for details). We denote the set of realizable G such
that G(z)X(z) = z−LI by I(X, L).

2.2. System Model

The system model is depicted in Fig. 1. We adopt the standard model
of a MIMO channel with additional interferer (the extension of our
results to multiple interferers is straight forward). Both channel and
interferer are realizable MIMO systems with p inputs and q ≥ p
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outputs. The input-output relation is

yj =
∞X

k=0

Hkuj−k +
∞X

k=0

H
I
ku

I
j−k + nj (j ∈ N). (1)

Here, {uk} ⊂ C
p and {uI,k} ⊂ C

p denote transmitted signal vec-
tors of transmitter and interferer, respectively, {nk} ⊂ C

q denotes
noise, and {yk} ⊂ C

q denotes received signals. {Hk} ⊂ C
q×p

and {HI,k} ⊂ C
q×p are the channel impulse responses of transmit-

ter and interferer, respectively. We assume transmitted signals and
noise are independent spatially and temporally white Gaussian ran-
dom variables with zero mean. The variance of the transmitted sig-
nals and noise is one and σ2 > 0, respectively. Using Z-transform,
we obtain the equivalent Z-domain formulation

y(z) = H(z)u(z) + HI(z)uI(z) + n(z)

of (1), where H(z) =
P∞

k=0 Hkz−k, u(z) =
P∞

k=0 ukz−k, etc.
After transmission through the channel, the delayed estimations

{ûk−L} of {uk }, which are obtained with a linear equalizer G, are
demodulated. One has the option that the demodulated signals are
fed back in the next time slot, passed through the feedback filter B,
and then added to the estimated signals.

2.3. Problem Statement

In this paper we aim to compute realizable equalization filters
G(z) =

P∞
k=0 Gkz−k that minimize the asymptotic expectation of

the mean square error, i.e.

J(G) := lim
K→∞

E

"
1

K + 1

KX
k=0

‖ek‖
2
2

#
.

Here, e(z) =
P∞

k=0 ekz−k := û(z)− z−Lu(z) is the equalization
error for the estimation û(z) := G(z)y(z) of the transmitted sig-
nals. L ∈ N is an estimation delay. We address the following linear
equalization problems.

H2-ZF: Find G realizable, such that G(z)H(z) = z−LIp and
‖G‖2

2 = min.

MMSE: Find G realizable, such that J = min for HI = 0.

ZF-IRC: Find G realizable, such that G(z)H(z) = z−LIp and
J = min.

MMSE-IRC: Find G realizable, such that J = min.

These linear filters can directly be used to compute the correspond-
ing optimal DFEs. Similar to [9], the DFE can be modeled by re-
placing H and HI with the equivalent channel and interferer

H
DFE(z) =

»
H(z)

μz−(L+1)Ip

–
, H

DFE
I (z) =

»
HI(z)

0p

–
.

Here, μ > 0 is a parameter that measures the reliability of the feed-
back path z−(L+1)Ip. If correct past decisions are assumed, μ → ∞
is optimal. From any linear equalizer GDFE for HDFE , the accord-
ing feed-forward and feed-backward filters G and B are obtained as
the first q columns and the last p columns of GDFE , respectively.

2.4. State Space Systems

A state space system is a linear and time-invariant (LTI) system with
a time-domain description»

xk+1

yk

–
=

»
A B
C D

– »
xk

uk

–
(k ∈ N),

where again {uk} ⊂ C
p and {yk} ⊂ C

q denote inputs and outputs
of the system, while the {xk} ⊂ C

n are the states of the system. If
the initial state x0 is zero, the input-output behavior of a state space
system is described in the Z-domain by its transfer function

T(z) = D + C(zI − A)−1
B

= D +
∞X

k=1

CA
k−1

Bz
−k =:

»
A B

C D

–
(z).

Thus, every state space system is causal. Conversely, every causal
rational matrix can be realized with a state space system [10, Ch.
6.1]. This, of course, in particular includes all FIR MIMO filters.
The system is called stable if all eigenvalues of A have modulus
less than one, which implies that its transfer function is stable. On
the other hand, every causal rational matrix that is stable also has a
stable state space realization [10, Ch. 6.2].

3. H2-ZF AND MMSE

The H2-ZF problem seems to be the simplest of the problems con-
sidered in this paper. The more general MMSE problem, which may
be easily approached using the Kalman filter [3], can be used to solve
H2-ZF by sending σ2 → 0. However, this approach can run into nu-
merical problems [11]. Therefore, direct approaches to H2-ZF are
of interest. For the special case of no estimation delay, i.e. L = 0,
direct algorithms that solve H2-ZF have been given in [12, 13]. For
the general case, an optimization approach using linear matrix in-
equalities (LMIs) was given in [14]. Also, there exist various direct
algorithms for realizable zero forcing equalizers with estimation de-
lay [15, 16]. However, none of them minimizes the H2 norm.

Our algorithm for H2-ZF extends the approach from [12] for the
delay free case. Due to space limitations, we give no proof.

Input: H =

»
A B

C D

–
with I(H, L) �= ∅, where A is n × n, D

is q × p with rank p, q > p,1 and L > 0.

Outp.: Solution G of H2-ZF.

1) Set D+ := (D∗D)−1D∗ and compute the q × (q − p) matrix
D⊥ that satisfies D⊥D∗

⊥ = Iq −DD+. Set D+
⊥ := D∗

⊥, and
compute the singular value decomposition

D
+
⊥ = U

ˆ
S 0q−p×p

˜ »
V ∗

1

V ∗
2

–
.

2) Compute a n×(q−p) matrix B⊥ such that A0 := A−BD+C−
B⊥D⊥C is stable. Set B0 := −BD+ − B⊥D⊥.

3) Set E := A−BD+C, F := B0V2V
∗
2 B∗

0 , G := C∗V1V
∗
1 C and

compute the stabilizing solution Y11 ≥ 0 to the discrete-time
algebraic Riccati equation

Y11 = F + E(In + Y11G)−1
Y11E

∗
.

4) Define

y1 := B0V2V
∗
2 (D+)∗

+E(In + Y11G)−1
Y11C

∗(D+)∗,

yk := E(In + Y11G)−1
yk−1 (k = 2, . . . , L).

1The case q = p is trivial because then inverses are unique.
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5) Set

Â :=

2
4 A0

D+C
I(L−1)p 0(L−1)p×p

3
5 ,

B̂ :=

2
4 B0

D+

0(L−1)p×q

3
5 ,

T := V1(Iq−p + V
∗
1 CY11C

∗
V1)

−1
V

∗
1 ,

R :=

2
4 A0Y11C

∗ + B0

D+CY11C
∗ + D+ˆ

y1 . . . yL−1

˜∗
C∗

3
5 T,

S := −y
∗
LC

∗
T,

Φ :=
ˆ

RC 0(n+Lp)×(L−1)p 0(n+Lp)×p

˜
,

Ψ :=
ˆ

SC 0p×(L−1)p Ip

˜
,

and return

G =

2
4 Â B̂

Φ Â − Φ R

Ψ −Ψ S

3
5 .

We point out that the complexity of our algorithm grows only lin-
early with the estimation delay L.

Now, with H2-ZF solved, the solution to MMSE follows easily.

Proposition 1. Let Gaug(z) =
ˆ

G(z) G2(z)
˜

be the solution
to H2-ZF applied to the augmented channel

H
aug(z) =

»
H(z)
σIp

–
.

Then G(z) is the solution to MMSE.

Proof. Note that Gaug(z)Haug(z) = z−LIp if and only if
σG2(z) = z−LIp − G(z)H(z). Since J(G̃) = σ2‖G̃‖2

2 +

‖z−LIp − G̃H‖2
2 by [17, Prop. 3.1], we see that

J(G) = σ
2‖G‖2

2 + ‖z−L
Ip − GH‖2

2

= σ
2(‖G‖2

2 + ‖G2‖
2
2) = σ

2‖Gaug‖2
2

= σ
2 min

[G̃ G̃2]∈I(Haug,L)
(‖G̃‖2

2 + ‖G̃2‖
2
2)

= σ
2 min

G̃ realizable
(‖G̃‖2

2 + σ
−2‖z−L

Ip − G̃H‖2
2)

= min
G̃ realizable

J(G̃).

4. ZF-IRC

The ZF-IRC problem is a hybrid problem between H2-ZF and
MMSE-IRC. In contrast to H2-ZF, the Kalman filter cannot be ap-
plied, because the interference is temporally and spatially correlated.
Before we can give the solution to ZF-IRC, we have to review the
spectral factorization. Consider a positive definite hermitian transfer
function X, i.e. X(z) = X(z̄−1)∗. Then, S is a spectral factor of
X if S is causal, stable, minimum phase (i.e. with all zeros inside the
unit circle), and it holds X(z) = S(z)S(z̄−1)∗. The factorization
X(z) = S(z)S(z̄−1)∗ is known as the spectral factorization. We
refer to [18] and the references therein for further details.

We now derive the solution to ZF-IRC. The following proposi-
tion shows, that ZF-IRC is in fact a special case of H2-ZF.

Proposition 2. Let S(z) be a spectral factor of HI(z)HI(z̄
−1)∗ +

σ2Iq , and let GS(z) be the solution to H2-ZF applied to the channel
S−1(z)H(z). Then the solution to ZF-IRC is given by

G(z) := GS(z)S−1(z).

Proof. Obviously G(z)H(z) = z−LIp. Similar to [17, Prop. 3.1],
one shows J(G̃) = ‖G̃HI‖

2
2 + σ2‖G̃‖2

2 . Then,

J(G) = ‖GHI‖
2
2 + σ

2‖G‖2
2

=

ˆ
|z|=1

tr
˘
G(z)

`
HI(z)HI(z̄

−1)∗ + σ
2
I

´
× G(z̄−1)∗

¯ dz

2πiz

=

ˆ
|z|=1

tr
˘
G(z)S(z)S(z̄−1)∗G(z̄−1)∗

¯ dz

2πiz
= ‖GS‖2

2

= ‖GS‖
2
2 = min

G̃∈I(S−1H,L)
‖G̃‖2

2 = min
G̃∈I(H,L)

‖G̃S‖2
2

(... )
= min

G̃∈I(H,L)
(‖G̃HI‖

2
2 + σ

2‖G̃‖2
2) = min

G̃∈I(H,L)
J(G̃).

5. MMSE-IRC

The MMSE-IRC problem seems to be much more general than H2-
ZF. However, combining the ideas from the last two sections, we can
again treat it as a special case of H2-ZF.

Proposition 3. Let S(z) be a spectral factor of HI(z)HI(z̄
−1)∗ +

σ2Iq , and let Gaug(z) =
ˆ

GS(z) G2(z)
˜

be the solution to
H2-ZF applied to the augmented channel

H
aug(z) =

»
S−1(z)H(z)

Ip

–
.

Then G(z) := GS(z)S−1(z) is the solution to MMSE-IRC.

We omit the proof. Next, we want to give an alternative approach
to MMSE-IRC, that does not require the spectral factorization. If the
causality constraint from MMSE-IRC is dropped, the optimal stable,
but generally non-causal equalizer is readily obtained as

H(z̄−1)∗(H(z)H(z̄−1)∗ + HI(z)HI(z̄
−1)∗ + σ

2
Iq)

−1
. (2)

Since stable equalizers form a superset of realizable equalizers, this
solution can be used as an upper performance bound for MMSE-
IRC. The next proposition gives an equalizer that is asymptotically
optimal because it converges to (2) with growing estimation delay.

Proposition 4. Let, for arbitrary estimation delay L > 0,

G
aug
L (z) =

ˆ
G1,L(z) G2,L(z) G3,L(z)

˜
denote the solution to H2-ZF for the augmented channel

H
aug(z) =

2
4 H(z̄)∗

HI(z̄)∗

σIq

3
5 .

Then the realizable equalizer GL(z) := G1,L(z̄)∗ approaches (2)
for L → ∞, i.e. zLGL(z) →(2).
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Fig. 2. Simulation results for L = 12, μ = 103.

Proof. The optimal right inverse with delay L for the channel

H
aug(z̄)∗ =

ˆ
H(z) HI(z) σIq

˜
is G

aug
L (z̄)∗ =

ˆ
G1,L(z̄) G2,L(z̄) G3,L(z̄)

˜∗
.

As L → ∞, zLG
aug
L (z̄)∗ converges towards the pseudoinverse

H
aug(z−1)

`
H

aug(z̄)∗Haug(z−1)
´−1

=2
64 H(z̄−1)∗

`
H(z)H(z̄−1)∗ + HI(z)HI(z̄

−1)∗ + σ2Iq

´−1

HI(z̄
−1)∗

`
H(z)H(z̄−1)∗ + HI(z)HI(z̄

−1)∗ + σ2Iq

´−1

σ2
`
H(z)H(z̄−1)∗ + HI(z)HI(z̄

−1)∗ + σ2Iq

´−1

3
75

Thus, in particular zLG1,L(z̄)∗ →(2) holds.

6. NUMERICAL EXAMPLE

We performed Monte-Carlo simulations for the 3×2 four tap channel

H(z) =

2
4 0.83z−3 − 1.24z−2 − 0.4z−1 − 0.91

−0.64z−3 − 0.23z−2 − 0.52z − 1.36
−0.23z−3 − 0.37z−2 − 0.27z + 0.68

−2.7z−3 − 0.19z−2 − 0.53z−1 + 0.16
−0.97z−3 + 0.86z−2 − 0.27z−1 − 0.29
−1.34z−3 + 0.94z−2 + 0.41z−1 − 0.38

3
5

with interferer

HI(z) =
2

5

2
4 −0.41z−3 − 1.24z−2 + 1.58z−1 − 0.67

1.08z−3 + 0.73z−2 − 0.08z−1 + 0.14
−0.01z−3 + 0.52z−2 − 0.3z−1 − 2.41

1.94z−3 + 0.91z−2 + 0.43z−1 − 1.49
0.61z−3 + 0.02z−2 + 0.17z−1 − 0.59
−1.66z−3 − 1.15z−2 − 0.02z−1 + 0.65

3
5 .

Fig. 2 compares the performance of the various equalizers derived
in this paper. For each SNR, 107 random binary phase shift key-
ing (BPSK) modulated signal vectors have been transmitted. The
equalizers that take CCI into account clearly outperform the CCI
unaware equalizers. Note that the asymptotically optimal equalizer
from Proposition 4 performs as good as the optimal MMSE-IRC.
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