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Abstract—We consider new optimization problems for
transceivers with DFE receivers and linear precoders, which also
use bit loading at the transmitter. First, we consider the MIMO
QoS (quality of service) problem, which is to minimize the total
transmitted power when the bit rate and probability of error of
each data stream are specified. The developments of this paper
are based on the generalized triangular decomposition (GTD)
recently introduced by Jiang, Li, and Hager. It is shown that
under some multiplicative majorization conditions there exists
a custom GTD-based transceiver which achieves the minimal
power. The problem of maximizing the bit rate subject to the total
power constraint and given error probability is also considered
in this paper. It is shown that the GTD-based systems also give
the optimal solutions to the bit rate maximization problem.1
Index Terms — Decision Feed-Back, BER Optimization,

Generalized Triangular Decomposition, Bit Allocation, MIMO
Transceiver.

I. INTRODUCTION
In this paper we consider the optimization of multiple-input

multiple-output (MIMO) communication systems with perfect
channel state information (CSI) at both sides of the link. The
focus of this paper will be on the system with a decision
feedback equalizer at the receiver, and a linear precoder at
the transmitter. The design methods for such a system have
been considered by many authors when the bit constellations
are fixed and identical for each sub-stream [13], [7], [8], [10],
[14], [12], [9]. Similarly, when the channel and DFE are given,
the bit loading scheme is a well treated problem [5]. Another
subclass of optimization problems for such transceivers was
considered in [2].
We consider two optimization problems for MIMO commu-

nication, both based on GTD (generalized triangular decom-
position) reported in [8]. The first problem is to minimize the
total transmitted power when the error probabilities and the bit
rates of the substreams are fixed. The similar problem setting
was discussed in [15] when each user is assigned the same
number of sub-channels in the DMT system. The problem we
are considering can be seen as the case in [15] where each
user is assigned one sub-channel. We show that the optimal
system can be designed by representing the channel in terms
of some custom GTD, and choosing the transceiver matrices
appropriately in terms of the GTD. Also, we consider the bit
rate maximization problem while the transmitted power and
the bit error rate are kept fixed. We also show the GTD system
is the optimal solution for this problem.
This paper is structured as follows. In Section II, we will

introduce the communication models and give explicit problem
formulations. Section III gives the transceiver structure based
on the generalized triangular decomposition of the channel
matrix. Section IV proves the optimality of the GTD-based
system for the two problems considered in the paper. Section V
presents the numerical simulation results related to the topics
discussed in the paper. The final conclusions of the paper are
summarized in section VI.
II. SYSTEM MODEL AND PROBLEM FORMULATIONS
The transceiver considered in this paper is shown in Fig.

1, with the sizes of matrices indicated (e.g., F is P × M ,
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etc.). The additive channel noise is assumed to have covariance
σ2

nI. Here F is the linear precoder, H is the channel, G is
the feedforward part of the equalizer, and B is the feedback
part. The decision device processes the vector ŝ bottom-up
sequentially, and the past decisions within a block are fedback
via B to correct future decisions in the block. This causality
of decision feedback is ensured by restricting B to be strictly
upper triangular.
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Fig. 1. The MIMO transceiver with linear precoder and DFE.

To understand how the problems of bit allocation and power
minimization arise, we first examine the relationships between
the error probabilities, bit rates and data stream powers.
Assume the input signals are zero-mean uncorrelated processes
representing independent data streams with powers Pk so that
the input covariance is

Λs = diag(P1, P2, · · · , PM ). (1)
Consider the situation where each data stream is represented
with a different constellation size. Let us say the kth data
stream uses bk-bit QAM symbols with average power Pk. If
the error at the kth sub-stream has variance σ2

ek
, based on the

low error and high bit rate assumption, it can be shown [11]
that

Pk

σ2
ek

≈ 2bk

3

(
Q−1

(
Pe(k)

4

))2

, (2)

where Pe(k) are the symbol error probabilities. This equation
expresses the average power to noise ratio required for the kth
data stream to operate at the probability of error Pe(k) with
bk-bit QAM constellation. Note that this formulation can be
easily specialized to the single user DMT system when we
set all Pe(k) to be equal [11]. The total power transmitted
can be written as Ptrans = Tr(FΛsF†) = Tr(F†FΛs) =∑M

k=1 Pk[F†F]kk. Substituting from (2) we can rewrite this
as

Ptrans =
M∑

k=1

dk2bkσ2
ek

[F†F]kk, (3)

where dk = 1
3 (Q−1(Pe(k)

4 ))2, which is determined by the
specified probability of error. It is usually assumed that the
previous detected symbols s̃ in Fig. 1 are always correct. When
we assume there is no error propagation, the zero forcing
constraint can be written as

GHF− B = I (4)
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This means that the interference from other transmitted sym-
bols is canceled out completely. Under the zero-forcing con-
straint, the error before the decision device for each sub-stream
entirely comes from the channel noise. Since the channel noise
has covariance σ2

nI, the error variance before the kth input of
the decision device is given by

σ2
ek

= σ2
n[GG†]kk. (5)

From (3) the transmitted power can then be written as

Ptrans =
M∑

k=1

ck2bk [F†F]kk[GG†]kk, (6)

where ck = σ2
ndk = σ2

n

3 (Q−1(Pe(k)
4 ))2.

In this paper we consider two MIMO transceiver problems.
The first one is the quality of service problem: to minimize the
transmitted power subject to the given bit rate and probability
of error constraints. The mathematical formulation of the
problem is as follows:

min
F,G,B

Ptrans (7)

s.t. (a) GHF = I + B
(b) {ck, bk} QoS for data stream k.

The second problem we want to address is bit rate maxi-
mization for fixed bit error rate and fixed transmitted power.
Consider again the system shown in Fig. 1, with the zero-
forcing constraint. For QAM modulation and under the high
bit rate assumption [1], the bit loading formula can be approx-
imated as

bk ≈ log2(Pk/(σ2
ekdk)). (8)

The problem of maximizing the average bit rate for fixed bit
error rate and fixed transmitted power can be formulated as

max
F,G,B,{Pk}

b =
1
M

M∑
k=1

log2(
Pk

σ2
ekdk

) (9)

s.t. (a) Tr(FΛsF†) ≤ Ptotal

(b) GHF = I + B.

We will see that the theorem of generalized triangular
decomposition (GTD) helps to solve the above two problems.

III. GTD SYSTEMS
First, let us review the GTD theorem, which was recently

introduced by Jiang, Li, and Hager [8].
Theorem 1: The generalized triangular decomposition

(GTD): Let H ∈ Cm×n be a given rank-K matrix with
singular values σh,1, σh,2, · · · , σh,K in descending order. Let
r = [r1, r2, · · · , rK ] be a given vector which satisfies

a ≺× h, (10)

where a = [|r1|, |r2|, · · · , |rK |], h = [σh,1, σh,2, · · · , σh,K ],
and “ ≺′′× stands for multiplicative majorization [8]. Then
there exist matrices R, Q, and P such that

H = QRP†, (11)
where R is a K × K upper triangular matrix with diagonal
terms equal to rk, and Q ∈ Cm×K and P ∈ Cn×K both have
orthonormal columns.

Proof: See [8].
Let us first discuss the general GTD-based system. We will

focus on the case with orthonormal precoders. It is shown in
[3] there is no loss of optimality in designing the precoder to
have orthonormal columns.
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Fig. 2. The system with orthonormal linear precoding and DFE.

With the channel decomposed using the GTD as in (11) we
now describe a method to construct the matrices {F,G,B}.
This design, with appropriate bit allocation, will be optimal
in the sense described in Theorem 2 below. In (11) the
matrix R is a K ×K upper triangular matrix with the vector
{[R]M+1,M+1, · · · , [R]K,K} equal to some permutation of
the vector {σh,M+1, · · · , σh,K}, which contains the smallest
K −M singular values of H. The first M diagonal elements
of R, r = {[R]1,1, · · · , [R]M,M} ∈ R+, is multiplicatively
majorized by the vector σ = {σh,1, · · · , σh,M}, which contains
the first M dominant singular values of H. Here we assume
the rank of the channel matrix H is K , and K ≥ M . Note
that this decomposition is possible because of the GTD theory
[8]. Also we want to point out that with this decomposition
we have

M∏
k=1

[R]2kk =
M∏

k=1

σ2
h,k, (12)

which is a direct consequence of the multiplicative majoriza-
tion relationship. This fact will be useful in later discussions.
Now consider Fig. 2. Suppose we choose the precoder F to

be such that

P†F =
(

IM
0

)
, i.e.,F = [P]P×M . (13)

SinceP has orthonormal columns,F has orthonormal columns
as well. The transmitted power will be

Ptrans =
M∑

k=1

Pk[F†F]kk =
M∑

k=1

Pk.

The matrix G0 will be chosen so that

G0Q = ( IM 0 ) , i.e.,G0 = [Q†]M×J . (14)

Since Q has orthonormal columns, G0 has orthonormal rows,
therefore the noise covariance after the filter G0 will be

E[G0nn†G†
0] = G0E[nn†]G†

0 = σ2
nI.

Thus the noise remains white after passing through the filter
G0. The signal sub-streams then will pass through some multi-
pliers {[R]−1

ii } before the decision devices. Those multipliers
can be equivalently viewed as a diagonal matrix multiplied
with the signal vector. Thus the feedforward filter can be
written as

G = (diag([R]M×M ))−1 G0. (15)

Therefore the signal transfer function from s to ŝ without the
decision feedback will be

GHF = (diag([R]M×M ))−1 [R]M×M .

The feedback filter B is the one that makes the zero-forcing
constraint satisfied, i.e.,

B = GHF − I = (diag([R]M×M ))−1 [R]M×M − I. (16)
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Since R is an upper triangular matrix, it can be seen that B
in (16) will be strictly upper triangular. In this scenario, the
noise variance in the k-th substream will be

σ2
ek

= σ2
n/[R]2kk. (17)

Substituting this into equation (3), the transmitted power
needed to satisfy the specified QoS and bit rate constraints
can be expressed as

Ptrans =
M∑

k=1

dk2bk [F†F]kkσ2
ek

=
M∑

k=1

dk2bk

[R]2kk

σ2
n =

M∑
k=1

ck2bk

[R]2kk

.

IV. OPTIMALITY OF THE GTD-BASED SYSTEM
In this section, we will show that the GTD-based system is

actually optimal for both of the problems discussed in Section
II under some mild conditions.

A. Quality of Service (QoS) Problem
Now it is time to solve the QoS problem. The solution is

given in the following theorem:
Theorem 2: Consider problem (7), then
(a) the minimum required power to achieve the specification

will be greater or equal to

Pmin = c2b(
1∏M

k=1 σ2
h,k

)
1

M ,

where c = M(
∏M

k=1 ck)
1

M and b = 1
M

∑M
k=1 bk;

(b) This Pmin is achievable if

{c12b1 , · · · , cM2bM }
c2b/M

≺x

{σ2
h,1, · · · , σ2

h,M}
(
∏M

k=1 σ2
h,k)

1
M

. (18)

Proof: Part (a) is clearly true since the problem (7)
discussed in [2] is a relaxed version of the current problem
(7).
Now let us prove part (b). Assume the rank of channel

matrix is K . Suppose the given {ck, bk} satisfies (18), then
there exists a K ×K upper triangular matrix R, such that the
decomposition

H = QRP†

is true, where Q and P have orthonormal columns and the
diagonal terms of R satisfy

[R]kk =

{
Mck2bk (

∏
M

k=1
σ2

h,k)
1

M

c2b , for k = 1, 2, · · · , M.
σ2

h,k , otherwise.
(19)

Note that this factorization is possible because from (18) we
have

{[R]2kk}M
k=1 ≺x {σ2

h,k}M
k=1

and by GTD theorem (theorem 1), such R exists. By using
the precoder and equalizer in (13) and (15) as discussed in
Sec. III, we are able to achieve Pmin with equality.
The intuition behind (18) is that, if the QoS constraint is

less spread out than the channel singular values, it is possible
to achieve the minimal Pmin with equality. This system,
which achieves the minimal Pmin is called custom GTD-
based system, since the value of the precoder and equalizer
are not computed solely depending on H, but also depending
on the given QoS {ck, bk}. Now it is clear that the GTD-based
system has much more flexibility than the linear transceiver
system. The custom GTD-based transceiver is computed from
the channel H and the given QoS constraints {ck, bk}.

B. Max-Bit-Rate with Fixed-Power Problem
First, we observe that the power constraint can be rewritten

as
M∑

k=1

Pk[F†F]kk ≤ Ptotal.

Also, since the zero-forcing constraint is imposed, the noise
comes entirely from the channel Gaussian noise. The noise
variance can be written as σ2

ek
= σ2

n[GG†]kk. Now we will
first find the optimal power Pk for given F and G, under the
total transmit power constraint. Based on the optimal power
allocation Pk, we will then derive the optimal transceiver for
maximizing the bit rate.
First of all, we observe that if {F,G,B} are given, the

problem (9) is a convex problem in Pk for all k. Since
the problem is convex and Slater’s condition [4] is easily
checked to be true, the duality gap is zero. Thus, we can
first solve the optimal Pk, which gives the global optimum,
and then substitute the formula of Pk and further solve for
optimal {F,G,B}. Similar to [1], to solve for the optimal
Pk we first check the Karush-Kuhn-Tucker (KKT) condition
[4]. Suppose P ∗k is the optimal value for problem (9), then the
KKT condition states that there exists a constant α such that

α ≤ 0, (20)

∂
∂Pk

{ 1
M

∑M
k=1 log2(

Pk

σ2
ek

dk
) +

α(
∑M

k=1 Pk[F†F]kk − Ptotal)} |Pk=P∗
k

= 0, (21)

α(
M∑

k=1

Pk[F†F]kk − Ptotal)|Pk=P∗
k

= 0. (22)

By solving these equations, we can get the optimal power
allocation

P ∗k = Ptotal/(M [F†F]kk). (23)

By substituting this into the bit rate, we have

b =
M∑

k=1

log2(
Ptotal

Mdk[F†F]kkσ2
ek

)
1

M

= log2(
M∏

k=1

Ptotal

Mck[F†F]kk[GG†]kk

)
1

M . (24)

Therefore, the problem of maximizing bit rate now is
reduced to maximizing (24) with the zero forcing constraint.
Note that to maximize (24) is the same as to minimize Eq.
(10) in [2]. This problem is already treated in detail in [2].
The maximized bit rate can be calculated from (24):

bmax = log2

(
Ptotal

c
(

M∏
k=1

σ2
h,k)

1
M

)
. (25)

As before, with the GTD-based system the maximum bit
rate can be achieved. We explain this briefly in the following.
Let us look at the system in Fig. 2. Choose F = [P]P×M ,
G0 = [Q†]M×J , G as in (15), and B as in (16). Then the
power in kth sub-stream will be

Pk = Ptotal/(M [F†F]kk) = Ptotal/M,
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and the noise variance will be σ2
ek

= σ2
n/[R]2kk. Substituting

those back into (24), the average bit rate of this system will
be

b = log2

(
Ptotal

c
(

M∏
k=1

σ2
h,k)

1
M

)
= bmax. (26)

Therefore, the GTD-based system achieves the maximum
bit rate. Thus, all the special cases of the systems discussed
[2] are optimal in this sense as well.

V. NUMERICAL SIMULATIONS
In this section we consider wireless communication systems

with multiple antennas at both sides of the link with perfect
channel state information. We use 100 randomly generated
MIMO channels for the simulation. The matrix channel is of
size 5 × 4, and normalized so that E[|[H]i,j |2] = 1.
We implement five methods in the numerical simulations.

“SVD”, “GMD”, “QR”, “BID” and stand for the special cases
of the GTD-based transceiver structures discussed in Section.
IV of [2]; “GB” is the custom GTD-based system derived from
the section III, where [R]kk is obtained from equality (19)
with given equal ck. The additive noise is complex circulant
Gaussian with average power normalized to 0 dB. The results
are given in terms of the uncoded bit error rate versus
transmitted power. Since the resulting optimal system acts
like parallel independent Gaussian channels, scalar channel
coding can be further added in each sub-stream to reduce the
probability of error.
Fixed, identical constellation: In Fig. 3 we consider the

system with a given fixed and identical constellation in each
sub-stream. In this simulation, each channel is given 6 bits,
therefore, a 64-QAM constellation is imposed. It can be
observed that the “GB” method performs similar to “GMD”,
and those two outperform all other methods. This is because
with equal constellation, our custom “GB” actually reduces
to the “GMD” system, which is optimal in terms of BER
performance [6]. For all other schemes, since the resulting
sub-channel gains are quite different, it is not surprising that
the equal bit allocation scheme would perform badly.
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Fig. 3. BER versus Tx-Power when all constellations are fixed as 64-QAM.

Fixed, nonidentical constellations: In Fig. 4 we consider the
system with fixed but different constellations in different sub-
streams. In this simulation, the bits allocated to the sub-streams
are forced to be [8, 8, 6, 6], which is 256-QAM, 256-QAM,
64-QAM, and 64-QAM, respectively. It can be observed that
“GB” outperforms all other methods significantly. However,
among the other four methods, there is no theory about which
one performs better than which.
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Fig. 4. BER versus Tx-Power when constellations are fixed as 256-QAM,
256-QAM, 64-QAM, and 64-QAM, respectively.

VI. CONCLUDING REMARKS
We have presented a method for the joint optimization of

the matrices {F,G,B} and the bits {bk} in a transceiver with
DFE. It is formally shown that when the bit allocation, pre-
coder, and equalizer are jointly optimized, linear transceivers
and transceivers with DFE have identical performance in the
sense that transmitted power is identical for a given bit rate
and error probability. We also proved that any GTD-based
system achieves the optimal performance. We also considered
the quality of services problem and showed that there is a
custom GTD-based system which gives the minimal power.
Both the theoretical analysis and numerical simulations have
been provided to validate the effectiveness of our results.
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