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ABSTRACT

In this paper, we investigate the power allocation optimization

problem for dual-hop nonregenerative OFDM relaying net-

works, where an aggregate power constraint is imposed on all

relays. We first formulate the model into a single-parameter

optimization problem, in which we found the related func-

tions are monotonically decreasing. Then based on the mono-

tonicity, we propose a bisection algorithm to solve the prob-

lem. We further illustrate that pairing of OFDM subcarriers

will not provide performance gain when the aggregate power

constraint is very large.

Index Terms— nonregenerative relays, optimal power al-

location, aggregate power constraint, OFDM

1. INTRODUCTION

The use of wireless relay is essential to provide broad cover-

age for wireless system. Deploying relays in cellular network

will overcome the shadowing effect, as well as enhance the

connectivity between a base station and mobile terminals at

cell boundaries. Hence relay networks have been considered

one of the most promising architectures for future wireless

networks.

Efficient power allocation (PA) among relays can improve

system performance in terms of instantaneous information

rate. For the frequency-flat fading model, [1] provided the

analytical optimal PA scheme where an aggregate power

constraint has been imposed on all relays, [2] proposed an

iterative algorithm under the condition of individual power

constraint on each relay, and [3] considered a hybrid case

where both aggregate and individual power constraint have

been simultaneously imposed on relays. In the frequency-

selective fading scenario, [4]–[6] discussed the PA problem

where the network consists of single relay. [4] proposed the

analytical solution where a transmission power constraint

has been imposed on either the unique nonregenerative re-

lay or the source node, and the result has been extended to
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MIMO relay link in [5]. [6] used an unified approach to ap-

proximately solve the joint PA problem for both regenerative

and nonregenerative relaying scenarios, where an aggregate

power constraint has been imposed on both the unique relay

and the source node.

In this paper, focusing on the frequency-selective fading

model, we consider the PA problem for a dual-hop OFDM

relaying network that consists of multiple nonregenerative re-

lays. We assume that an aggregate transmission power con-

straint has been imposed on all relays. Aiming at maximizing

the instantaneous information rate of the network, we pro-

pose the optimal PA scheme via a bisection algorithm for any

given PA at the source node. We further show that when the

power constraint is very large, pairing of subcarriers will not

improve the information rate.

The rest of the paper is organized as follows. The PA

problem is introduced in section II and formulated into a

single-parameter optimization problem in section III, then a

bisection algorithm to solve the problem is proposed. Nu-

merical results are presented in section IV and section V

concludes the paper.

2. PROBLEM FORMULATION

Consider a dual-hop multi-relay network consisting of one

source/destination pair and K nonregenerative relays. OFDM

is used for broadband communication between nodes and the

available bandwidth is divided into N subcarriers, in which

the channel is assumed to be frequency-flat. In the j-th sub-

carrier, the channel from source to destination, source to the

i-th relay, and the i-th relay to destination is denoted by hj ,

hij and gij , respectively. Each relay is assumed to know its

own backward and forward CSI (channel state information),

i.e., the i-th relay has access to hij and gij of all subcarriers,

thus coherent amplify-and-forward relays [3] are used. More-

over, all relays are supposed to work in half-duplex mode.

In the first time slot, the source sends parallel signal

streams to the rest nodes over all subcarriers. In the second

time slot, each relay transmits a scaled version of the received

signal to the destination. We assume that the signals of the

source transmitted over the j-th subcarrier are scaled by each

relay and also retransmitted in the j-th subcarrier [4]. Hence
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the scaling factor for the received data of the i-th relay in the

j-th subcarrier is

bij = aijg
∗
ijh

∗
ij ,

where non-negative factor aij is used to control the transmis-

sion power [3] and (·)∗ denotes complex conjugate.

For the sake of simplicity, we presume each of the paral-

lel signal streams at source has the same power Ps, and each

noise component involved in the entire transmission proce-

dure has the same variance σ2
n. Hence in the j-th subcar-

rier, the output SNR of using a temporal maximum-ratio com-

biner [4], which combines both received signals at destination

in two consecutive time slots, is given by

γj =

⎡
⎢⎣|hj |

2 +

(∑K
i=1 aij |gijhij |2

)2

1 +
∑K

i=1 a2
ij |gij |4|hij |2

⎤
⎥⎦ ·

Ps

σ2
n

,

and the instantaneous information rate of the communication

between source and destination over all subcarriers is

C = 0.5

N∑
j=1

log2(1 + γj) (1)

where 0.5 accounts for half-duplex mode.

Imposing an aggregate transmission power constraint

Psum on all relays, we must find out the optimal power

control factors {âij} so as to maximize the instantaneous

information rate C in (1). For the i-th relay, the transmission

power in the j-th subcarrier is

Pij = |gijhij |
2
(
Ps|hij |

2 + σ2
n

)
· a2

ij , (2)

therefore we may formulate the PA problem as

{â11, · · · , âKN} = arg max
aij

s.t.
∑

K
i=1

∑
N
j=1

Pij≤Psum

C. (3)

Once âij is obtained, the optimal P̂ij can be achieved accord-

ing to (2).

3. OPTIMIZATION VIA BISECTION ALGORITHM

We first make the following definitions to simplify the expres-

sion of problem (3). Let

xj = [x1j , · · · , xKj ],

xij = |gij |
2|hij |aij , cij =

Ps|hij |2 + σ2
n

|gij |2Psum

,

dj = 1 + |hj |
2 Ps

σ2
n

, pij =

√
Ps

σ2
n

|hij |.

Now problem (3) can be reformulated as

{x̂1, · · · , x̂N} = arg max
xj , j=1,··· ,N

s.t.
∑

N
j=1

∑
K
i=1

cijx2

ij
≤1

N∑
j=1

fj(xj) (4)

where

fj(xj) = 0.5 log2

⎡
⎢⎣dj +

(∑K
i=1 pijxij

)2

1 +
∑K

i=1 x2
ij

⎤
⎥⎦ .

3.1. Optimization in each subcarrier

In the optimal PA scheme, Psum is optimally allocated among

subcarriers. Furthermore, the power for each subcarrier is

also optimally distributed among all relays. Therefore, we

may first consider the PA problem for any given subcarrier

w.r.t. an aggregate power constraint being imposed to all re-

lays in that subcarrier.

Referring to (4), the PA problem for the j-th subcarrier

can be formulated as

x̃j = argmax
xj

s.t.
∑

K
i=1

cijx2

ij
≤μj

fj(xj), (5)

in which μj ∈ [0, 1] and represents a given aggregate power

constraint on all relays in that subcarrier. Actually, problem

(5) is equivalent to the PA problem in the frequency-flat sce-

nario. It has been solved in [1] and we rewrite the result as

x̃ij =

√√√√ 1∑K
i=1

μjcijp2

ij

(μj+cij)2

·
μjpij

μj + cij

(6)

which satisfies
∑K

i=1 cij x̃
2
ij = μj . The corresponding maxi-

mum of fj(xj) is

fj(x̃j) = ξj(μj) = 0.5 log2

[
dj +

K∑
i=1

μjp
2
ij

μj + cij

]
. (7)

3.2. Optimization among all subcarriers

Referring to (7), now problem (4) degrades to

{μ̂1, · · · , μ̂N} = arg max
μj

s.t.
∑

N
j=1

μj≤1

N∑
j=1

ξj(μj) (8)

which means finding out the optimal PA scheme only among

subcarriers. Since ξj(μj) is monotonically increasing for

each j, the optimal {μ̂1, · · · , μ̂N} should satisfy

N∑
j=1

μ̂j = 1. (9)
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Taking the method of Lagrange multipliers to calculate

{μ̂1, · · · , μ̂N} by setting

L(x1, · · · ,xN , λ) =

N∑
j=1

fj(xj) − λ

⎛
⎝ K∑

i=1

N∑
j=1

cijx
2
ij − 1

⎞
⎠ ,

the necessary condition
∂L(x1,··· ,xN ,λ)

∂xij
= 0 for maximizing

L(x1, · · · ,xN , λ) will result in

λ =
pijφjϕj − xijφ

2
j

xijcijϕj(djϕj + φ2
j )

, (10)

in which φj =
∑K

i=1 pijxij and ϕj = 1+
∑K

i=1 x2
ij . In the j-

th subcarrier, the solution x̂j of problem (4) and the solution

μ̂j of problem (8) must satisfy equation (6), thus substituting

(6) into (10) will yield

λ = Gj(μ̂j) (11)

where

Gj(μ̂j) =

∑K
i=1

cijp2

ij

(μ̂j+cij)2

dj +
∑K

i=1

μ̂jp2

ij

μ̂j+cij

. (12)

If denoting the inverse function of Gj(·) by G−1
j (·), we have

μ̂j = G−1
j (λ). (13)

Inserting (13) into (9) will yield

N∑
j=1

G−1
j (λ) = 1, (14)

which is an equation with only one unknown parameter λ.

Once λ is solved from (14), μ̂j and x̂j can be obtained ac-

cording to (13) and (6) respectively.

Although analytical expression of the function G−1
j (·) is

not available, it is not difficult to prove that for each j, the

function λ = Gj(μ̂j) (or μ̂j = G−1
j (λ), resp.) is monoton-

ically decreasing w.r.t. μ̂j (or λ, resp.). Thus
∑N

j=1 G−1
j (λ)

is also monotonically decreasing which guarantees that the

bisection algorithm can be used to solve (14).

The value range of λ is determined as follows. According

to the monotonicity of λ = Gj(μ̂j), we have

λ ∈
⋂

j∈{1,··· ,N}

[Gj(1), Gj(0)]

which leads to λmin = max {G1(1), · · · , GN (1)} and

λmax = min {G1(0), · · · , GN (0)} .

3.3. Bisection algorithm to calculate λ and {μ̂1, · · · , μ̂N}

We state the bisection algorithm as Algorithm 1 and we ex-

plain it as follows. In each iteration, we first set λ′ as a

temporary value of λ. Then we calculate the corresponding

{μ′
1, · · · , μ′

N} according to μ′
j = G−1

j (λ′). If
∑N

j=1 μ′
j > 1,

which indicates λ′ is less than the desired λ, we need to in-

crease λ′ for next iteration, otherwise, we should decrease λ′.

The iterative procedure is terminated when |
∑N

j=1 μ′
j − 1| ≤

ε1, in which ε1 is a prescribed error threshold.

Algorithm 1 Bisection algorithm to compute λ and

{μ̂1, · · · , μ̂N}

1: {μ′
1, · · · , μ′

N} ⇐ {1, · · · , 1};

2: while |
∑N

j=1 μ′
j − 1| > ε1 do

3: λ′ ⇐ λmin+λmax

2 ;
4: for j = 1 to N do
5: μ′

j ⇐ G−1
j (λ′);

6: end for
7: if

∑N
j=1 μ′

j > 1 then
8: λmin ⇐ λ′;
9: else

10: λmax ⇐ λ′;
11: end if
12: end while
13: λ ⇐ λ′;
14: {μ̂1, · · · , μ̂N} ⇐ {μ′

1, · · · , μ′
N};

In the 5-th line of Algorithm 1, μ′
j = G−1

j (λ′) is calcu-

lated according to Algorithm 2. Its key idea is very similar to

that of Algorithm 1 and we omit the explanation.

Algorithm 2 Bisection algorithm to compute μ′
j = G−1

j (λ′)

1: μmax ⇐ 1; μmin ⇐ 0; λ′′ ⇐ λ′ + 1;
2: while |λ′′ − λ′| > ε2 do
3: μ′′

j ⇐ μmin+μmax

2 ;
4: λ′′ ⇐ Gj(μ

′′
j );

5: if λ′′ > λ′ then
6: μmin ⇐ μ′′

j ;
7: else
8: μmax ⇐ μ′′

j ;
9: end if

10: end while
11: μ′

j ⇐ μ′′
j ;

3.4. Pairing of subcarriers

In previous sections, we have assumed that the signals of

the source transmitted over the j-th subcarrier are scaled by

each relay and also retransmitted through the j-th subcarrier.

A higher performance in terms of instantaneous information

rate can be achieved if the subcarriers of both the backward

and forward channels can be paired [4]. Altogether, there are

(N !)K paring possibilities which imposes a prohibitive com-

putation burden on the system.
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However, when Psum → ∞, the channels from relays

to destination can support reliable communication at any

rate, thus both the first hop and the direct link bottleneck

the performance of the entire network. Under this situa-

tion, pairing of subcarriers cannot improve system perfor-

mance and the network is equivalent to N parallel point-to-

point SIMO systems. The j-th equivalent SIMO channel is

[hj, h1j , · · · , hKj], hence we have

limC
Psum→∞

=
N∑

j=1

0.5 log2

[
1 +

(
|hj |

2 +
K∑

i=1

|hij |
2

)
Ps

σ2
n

]
.

(15)

4. NUMERICAL RESULT

In this section we present the performance of the optimal PA

scheme. We adopt the same assumption about the channels as

that in [4], hence the n-th complex channel coefficient hn in

the time domain is distributed as

hn ∼ CN

(
0,

1

L(1 + d)α

)
,

in which d is the distance between two nodes and α is the

path loss exponent. We set the distance between source and

destination to d0 = 1000 meters. We further assume that all

relays are placed randomly within the middle range between

source and destination, thus the distance between source and

each relay is about d = 500 meters. The number of channel

taps is set to L = 4 and other parameters are given by α =
3, N = 16, K = 3, σ2

n = 1.

In Fig.1, we show the performance of the optimal PA

scheme by varying Psum where ρ0 = Psum

Nσ2
n(1+d0)α and Ps =

σ2
n(1 + d0)

α. The pairing strategy we adopted here is the

same as that in [4], i.e., the best source to relay channel is

paired with the best relay to destination channel. The average

of (15) is also plotted in Fig.1 which is denoted by “asymp-

totic result”. We further illustrate the performance of a sub-

optimal scheme, where Psum is uniformly allocated not only

among all subcarriers but also within each subcarrier, and we

use “uniform PA” to denote this scheme.

Obviously, the performance of the optimal PA scheme is

better than that of the “uniform PA” scheme. We also observe

that pairing of subcarriers cannot provide performance gain

when ρ0 > 30dB. Furthermore, the performances of both

optimal PA schemes (with pairing and without pairing) coin-

ciding with “asymptotic result” proves (15) numerically.

5. CONCLUSION

Aiming at maximizing the instantaneous information rate of a

dual-hop nonregenerative relaying network in the frequency-

selective scenario, we have investigated the PA problem un-

der the condition of an aggregate transmission power being
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Fig. 1. Instantaneous information rate comparison among dif-

ferent PA schemes.

imposed on all relays. We have provided a bisection algo-

rithm to obtain the optimal PA scheme. Furthermore we have

illustrated that pairing of OFDM subcarriers will not provide

performance gain when the imposed power constraint is very

large.

6. REFERENCES

[1] P. Larsson and H. Rong, “Large-scale cooperative re-

laying network with optimal coherent combining under

aggregate relay power constraints,” in Proc. of Future
Telecomm. Conf., 2003.

[2] Y. Jing and H. Jafarkhani, “Network beamforming us-

ing relays with perfect channel information,” in Proc.
ICASSP, April 2007, vol. 3, pp. III–473–III–476.

[3] T.Q.S. Quek, M.Z. Win, H. Shin, and M. Chiani, “Opti-

mal power allocation for amplify-and-forward relay net-

works via conic programming,” in Proc. ICC, June 2007,

pp. 5058–5063.

[4] I. Hammerström and A. Wittneben, “On the optimal

power allocation for nonregenerative ofdm relay links,”

in Proc. ICC, June 2006, vol. 10, pp. 4463–4468.

[5] I. Hammerström and A. Wittneben, “Power alloca-

tion schemes for amplify-and-forward mimo-ofdm relay

links,” IEEE Trans. Wireless Commun., vol. 6, no. 8, pp.

2798–2802, August 2007.

[6] Y. Li, W. Wang, J. Kong, W. Hong, X. Zhang, and

M. Peng, “Power allocation and subcarrier pairing in

ofdm-based relaying networks,” in Proc. ICC, May 2008,

pp. 2602–2606.

2656


