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ABSTRACT
This paper focuses on perturbation-based distributed beamforming
with 1-bit feedback for wireless amplify-and-forward relay net-
works. We propose to use multiplicative perturbations based on
Givens rotations to adapt the beamforming weights while guarantee-
ing a sum power constraint for the relays. This perturbation scheme
is shown to be computationally efficient and easy to design, thus al-
lowing for low-complexity relay nodes. An adaptation of the Givens
rotation angle allows to approach optimum performance arbitrarily
close. Numerical simulations demonstrate noticeable performance
gains over additive perturbation schemes that have been exclusively
considered up to now.

Index Terms— relay network, amplify-and-forward, distributed
beamforming, Givens rotation, feedback

1. INTRODUCTION

Motivation. Distributed beamforming with half-duplex amplify-
and-forward (AF) relays has recently attracted much attention due
to its ability to exploit spatial diversity in a distributed fashion [1–3].
However, this approach imposes stringent requirements on the avail-
ability of channel state information (CSI) at the relay nodes; either
global CSI (i.e., all channels) or local CSI (i.e., each relay’s own
backward and forward channel) is required. The requirement for
CSI at the relays can be avoided by using feedback from the desti-
nation to the relays in order to adaptively adjust the beamforming
weights. Perturbation-based beamforming (PB-BF) is a well known
example for such an approach, applicable to centralized arrays with
co-located antennas [4, 5]. In [6], we proposed deterministic, addi-
tive vector perturbations and 1-bit feedback to extend PB-BF to relay
networks. This scheme has the potential to approach optimum per-
formance without any CSI at the relays. However, to satisfy a sum
power constraint each update of the beamforming weights involves
a vector normalization at each relay.

Contributions and Paper Organization. In this paper, we pro-
pose multiplicative perturbations in terms of elementary Givens ro-
tations [7] for PB-BF in wireless relay networks. The relays re-
ceive 1-bit feedback from the destination to adapt their beamforming
weights with the goal of maximizing the signal-to-noise ratio (SNR)
at the destination. Our multiplicative perturbation scheme has the
advantage that it inherently maintains constant sum power and has a
computational complexity at each relay which is independent of the
number of relays in the network. This is in striking contrast to ad-
ditive vector perturbation techniques (cf. [6]). We further show how
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the adaptation behavior of our proposed scheme can be controlled in
an intuitive manner and provide numerical results that illustrate the
performance of our method in comparison to additive PB-BF.
The rest of the paper is organized as follows. Section 2 provides

the background for distributed beamforming in relay networks. The
proposed multiplicative perturbation scheme is introduced and dis-
cussed in detail in Section 3. Simulation results are shown in Section
4. Finally, conclusions are given in Section 5.

2. NETWORK BEAMFORMING

System Model. We consider a half-duplex wireless relay network
with single antenna nodes where a single source S communicates
with a single destination D via R amplify-and-forward relays Ri,
i = 1, . . . , R (cf. Fig. 1). There is no direct link between S and D,
and we assume perfect synchronization among the nodes. The half-
duplex constraint necessitates transmission in two hops. In the first
hop, S transmits the signal √PS s to the relays which receive

xi =
√

PS his + wi. (1)

Here, s is the transmit symbol normalized as E{|s|2} = 1 (E{·}
denotes expectation), PS denotes the average transmit power of the
source S , hi is the complex fading coefficient of the “backward”
channel1, and wi ∼ CN (0, N0) denotes i.i.d. circularly complex
Gaussian noise. In the second hop, each relay applies a complex
beamforming weight αi to the signal it has received and forwards

ri =

s
P

Pxi

α∗

i xi , (2)

to the destination D; here, Pxi
= E{|xi|2|hi} is the average re-

ceive power at relay Ri and complex conjugation (superscript ∗)
will simplify notation later on. Throughout this paper, we assume
a sum power constraint

PR
i=1 E

˘|ri|2|hi

¯
= P . With the power

normalization in (2), this requires the beamforming vector α =
(α1 . . . αR)T to have unit Euclidean norm, ‖α‖ = 1. The desti-
nation receives y =

PR
i=1 giri + v, where gi denotes the complex

fading coefficient of the “forward” channel between Ri and D and
v ∼ CN (0, N0) is circularly complex Gaussian noise. Combining
this with (1) and (2) yields the compound channel model2

y = ξs + η, with ξ � α
H
h̄, η � α

H
Ḡw + v. (3)

In this expression, h̄ � (h̄1 . . . h̄R)T with h̄i � higi

p
PSP/Pxi

,
Ḡ�diag(ḡ1, . . . , ḡR)with ḡi �gi

p
P/Pxi

, andw� (w1 . . . wR)T .
Note that the beamforming vector α not only affects the effective
channel gain ξ in (3) but also the noise η.

1Note that we do not assume a specific channel statistics.
2Superscript T (H ) denotes (Hermitian) transposition; diag(x1, . . . , xm)

is them × m diagonal matrix with diagonal elements x1, . . . , xm.
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Fig. 1. Wireless relay network with feedback.

The receive SNR at the destination D can be obtained from (3)
as (I is the identity matrix)

ρ(α) �
E

˘|ξs|2 ˛̨
h̄

¯
E

˘|η|2 ˛̨
Ḡ

¯ =
1

N0

|αH h̄|2
‖(I + ḠḠH)1/2

α‖2
. (4)

Note that the SNR is invariant to a common phase factor, i.e.,
ρ(α) = ρ(ejψ

α). Up to this phase ambiguity, ρ(α) can be shown
to have a unique global maximum ρmax (and no local maxima). The
beamforming weights α can be designed to maximize the received
SNR ρ(α) in (4) subject to the sum power constraint ‖α‖2 = 1.
This leads to the optimum beamforming vector [1, 2]

αopt =
(I + ḠḠH)−1h̄

‖(I + ḠḠH)−1h̄‖ , (5)

which is unique up to a phase factor. However, calculating the op-
timum beamforming weights can be shown to require either global
CSI at all relays or local CSI for each relay and global CSI atD with
feedback of a scalar normalization factor to the relays.

Perturbation-based Beamforming. Motivated by beamforming
techniques for co-located arrays [4, 5], we proposed distributed BF
for relay networks based on additive weight perturbations in [6].
These techniques circumvent the need for CSI at the relays and
allow to approach the maximum of the objective function3 ρ(α).
We next briefly review the transmission principle, termed

take/reject (T/R) perturbation (see [6] for more details). The idea is
to approximate the optimum beamforming vector αopt by iteratively
updating the beamforming weights at the relays according to 1-bit
feedback provided by the destination. To this end, the source trans-
mits frames that consist of two training blocks B̃(p)

k and B(p)
k , and

a data block B(d)
k (k is the frame index). The relays forward these

frames according to (2), using the currently best beamforming vector
(denoted αk) for B(p)

k and B(d)
k , while using a perturbed version α̃k

for the training portion B̃(p)
k . Up to now, only the following additive

perturbations have been considered (cf. [6]):

α̃k =
αk + μqkmod Ñ

‖αk + μqkmod Ñ‖ . (6)

Here, μ is a step-size parameter and qn denotes the additive per-
turbation vector taken cyclically from a deterministic R×Ñ matrix
(q0 . . .qÑ−1) with Ñ ≥ 4R [6]. Note that (6) involves a normal-
ization which is necessary to satisfy the sum power constraint and
requires that all beamforming weights are tracked at each relay. This
implies that the computation of (6) in general needs 10R real flops
and one square root operation per relay.

3Note that the receive power PD(α) � E
˘
|ξs|2

˛̨
h̄

¯
= |αH

h̄|2 can
as well be used as objective function (cf. [6]).

The destination evaluates the effectiveness of the beamform-
ing weights αk and α̃k with regard to the objective function ρ(α)

within B(p)
k and B̃(p)

k , respectively. It then provides a single bit ck of
feedback to the relays, indicating which weights perform better, i.e.,
ck =0 if ρ(αk) ≥ ρ(α̃k) and ck =1 if ρ(αk) < ρ(α̃k). The relays
update the beamforming vector αk+1 to be used in the next frame
according to αk+1 = αk (“reject” α̃k) if ck = 0 and αk+1 = α̃k

(“take” α̃k) if ck = 1. The new vector αk+1 will then be the basis
for the next perturbation and the whole process continues in an it-
erative manner. The first frame is initialized by setting ρ0 = 0 and
α̃0 =α0, where α0 can be an arbitrary vector with ‖α0‖2 =1.

3. PROPOSED PERTURBATION SCHEME

Beamforming Manifold. This section proposes to replace (6) with
a multiplicative weight perturbation scheme. This is motivated
by the fact that the sum power constraint ‖α‖2 = 1 implies that
the real-valued representation (Re{αT } Im{αT })T of admissible
beamforming vectors lies on a (2R−1)-dimensional hypersphere in
the 2R-dimensional (real) Euclidean space. In addition, the phase
invariance of our objective function means that there are disjoint
one-dimensional equivalence classes of beamforming vectors within
which the SNR ρ(α) remains constant. It is sufficient to consider
only one representative of each equivalence class, which reduces the
number of degrees of freedom by one. Without loss of generality,
we choose this representative to be α

′ = e−j arg(αR)
α such that

Re{α′

R} = |αR| ≥ 0 and Im{α′

R} = 0. In the following, we thus
restrict to the beamforming vectors

a =
`
Re{αT } Im{α1} . . . Im{αR−1}

´T

which have length R̄ = 2R−1 but, due to the constraint ‖a‖2 = 1,
lie on a (2R−2)-dimensional hyper-hemisphereH. Note that

α =
`
a1 . . . aR)T + j

`
aR+1 . . . a2R−1 0)T .

Rewriting the cost function ρ(α) in terms of a reveals that it has a
unique global maximum onH, i.e., without phase ambiguity.
As compared to the Euclidean perspective underlying (6), we

have reduced the problem dimension by two. Furthermore, (6) is
intended to approximate Euclidean-space steepest ascent (gradient)
techniques but does not account for the manifold structure of the
hypersphere (this necessitates the renormalization). Specifically,
the natural notion of a translation on the hypersphere is rotation,
amounting to multiplication by a matrix Q belonging to the special
orthogonal group SO(R̄) [8], defined byQT Q=I and det(Q)=1.

Multiplicative Perturbation. In the light of the foregoing discus-
sion we propose to replace the additive perturbation (6) with

ãk = Qk modN ak , (7)

where Qn ∈ SO(R̄) denotes orthogonal matrices cyclically taken
from an appropriately chosen set I�{Q0, . . . ,QN−1} of size |I|=
N . The set I is known to all relays so that each relay can keep
track of all beamforming weights. Note that by construction ‖ãk‖=
‖ak‖ = 1. Particularly simple and useful examples for orthogonal
matrices are Givens rotations [7] by an angle φ∈(−π,π] within the
(l, m)-plane (with l �=m):

Γlm(φ) = (el em)

„
c s
−s c

«
(el em)T +

h
I − (el em)(el em)T

i
,

(8)
where c =cos(φ), s =sin(φ), and el denotes the lth canonical unit
vector. Applying Γlm(φ) to a vector performs a clockwise rotation
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of the lth and mth element by the angle φ (first term in (8)), while
all other elements remain unaffected (last term in (8)).
For any given initial vector a0, there is an orthogonal matrix

Q′ that rotates a0 into the optimum beamforming vector aopt in one
step. This matrix can be factored into R̄−1 Givens rotations [7] as

Q
′ =

R̄−1Y
l=1

Γl,l+1(φl), (9)

with properly chosen angles φl. In our distributed beamforming
setup, the angles φl and hence Q′ is not available. Nonetheless,
it appears promising to perform the multiplicative perturbation (7)
using a set I consisting of appropriately chosen Givens rotations.
Givens Perturbations. We next show that perturbations based on
Givens rotations have the advantage of being intuitive, computation-
ally efficient, and simple to design.

Intuition. As argued previously, rotations are the natural trans-
lation on the hyper-(hemi)sphere H and thus more intuitive than ad-
ditive perturbations. Specifically, additive perturbations can have ar-
bitrary orientation relative to H, thereby hindering an interpretation
of the parameter μ in (6) as step size. In the extreme case where
qkmod Ñ = αk, the perturbation is orthogonal to H at αk , result-
ing in α̃k = αk , i.e., no perturbation at all. In contrast, the angle
of the Givens rotation gives a clear indication of the amount of per-
turbation on H. Fig. 2 illustrates this behavior in two dimensions.
Starting from the initial vector a0, the Givens perturbations contin-
ually rotate the beamforming vector (marked with bullets) closer to
the optimum weights aopt while retaining the sum power constraint.
In contrast, additive perturbations (marked with crosses) suffer from
strongly varying step sizes (e.g., in the first perturbation) and require
normalization.

Design. The action of Givens rotations is geometrically intu-
itive and simplifies the design of the set I. In particular, any Givens
rotation Γlm(φ) is completely specified in terms of the index pair
(l, m) and the angle φ. Thus, instead of specifying the set I in
terms of N orthogonal matrices of dimension R̄× R̄, it is suffi-
cient to specify the corresponding N index pairs and angles. For
the moment, we consider a fixed choice of the rotation angle. Then,
there are R̄(R̄−1)/2 different index pairs and corresponding rota-
tion planes in total. However, following (9), the minimum number
of rotation planes is given by R̄−1 (in this case, each index has to
occur at least once in the list). For our T/R scheme, we have to allow
for clockwise and counter-clockwise rotations within each rotation
plane, yielding a set I of maximum size N = R̄(R̄−1) and mini-
mum size N =2(R̄−1). Note that counter-clockwise rotations can
be achieved by swapping indices, i.e., Γml(φ)=Γlm(−φ). Choos-
ing a large perturbation set increases the chance of picking a rotation
plane that allows a perturbation within the direction of the steepest
gradient; however, it potentially requires more trials until the “right”
rotation plane is getting used. With small N , each rotation plane is
tested more frequently but certain rotations not available within the
perturbation set can only be approximated over several iterations.

Complexity. Any Givens rotation involves only two elements of
ak, i.e., ãk,l =c ak,l−s ak,m, ãk,m =s ak,l+c ak,m, and ãk,i =ak,i

for i �= l, m. This means that the beamforming weights of at most
two relays are updated within each iteration, with each update re-
quiring only 6 flops per relay. In contrast to additive perturbation,
the complexity per relay of our multiplicative perturbation scheme
thus is independent of the number of relays. Furthermore, similari-
ties between our perturbation scheme and CORDIC algorithms [9]
can be exploited to reduce complexity even further via appropriate
choice of the rotation angle.

a0

R2

R1

aopt

Fig. 2. Example for perturbations in two dimensions under a unit-
length constraint (bullets: multiplicative, crosses: additive).

Angle Adaptation. In the following, we present a modification of
our Givens rotations based perturbation scheme which is motivated
by the fact that the method will get stuck as soon as the angular
distance between the current beamforming vector ak and the opti-
mum vector aopt is less than the fixed angle φ. In this case none
of the available rotations further improves the objective function.
An obvious way to evade this deadlock is a reduction of the rota-
tion angle. Specifically, we propose that all relays count the num-
ber of successive Givens perturbations that have been rejected by
the destination because they did not improve ρ(α); this essentially
amounts to accumulating the number of successive feedback bits
equal to zero. Whenever this number is larger than a certain inte-
ger M ≤N , all relays switch to a smaller angle (e.g., according to
φ ← γ φ, γ < 1). It may be advantageous to shrink the rotation
angle even before all available rotations have been rejected. Note
that the perturbation index set I remains unchanged, however. It
follows from the properties of the objective function that our Givens
perturbation scheme with angle adaptation asymptotically achieves
optimum performance. Yet, the convergence speed depends on the
specific choice of initial angle, angle reduction, andM .

4. SIMULATION RESULTS

We next study the performance of the multiplicative perturbation
scheme with angle adaptation via numerical simulations and provide
a comparison with the additive PB-BF scheme proposed in [6]. In
our simulations, all channels were chosen static i.i.d. Rayleigh fad-
ing. The source S transmitted BPSK symbols with power PS = P .
The destinationD had perfect knowledge of the compound channel ξ
to perform ML detection. We further ensured exact evaluation of the
objective funcion (in practice, the SNR is estimated at the destina-
tion using the training blocks, cf. [6]) and error-free 1-bit feedback.
All results shown were obtained using 105 fading realizations. Un-
less stated otherwise, we chose an initial rotation angle of φ = 45◦,
an angle reduction factor of γ = 0.25, and M equal to the size of
the perturbation set for the multiplicative scheme. For the additive
scheme, we used a constant step-size μ=0.5 and a perturbation set
of size Ñ =4R based on a discrete Fourier transformmatrix (cf. [6]).

Convergence Behavior. We first study the convergence rate for a
network of R = 3 relays at nominal SNR P/N0 = 14 dB. Fig. 3(a)
shows the empirical cumulative distribution function (cdf) of the nor-
malized SNR gap ρmax−ρ(αk)

ρmax
that remains after a fixed number of

transmission frames (shown as curve labels). Results are shown for
additive perturbation and for Givens perturbations with perturbation
sets4 of minimum size N =2(R̄−1)=8 (labeled ’minGivens’) and
of maximum sizeN = R̄(R̄−1)=20 (’maxGivens’). We note that no

4Here, we chose the sets such that all the different rotations planes first
undergo clockwise and then counter-clockwise rotations.
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Fig. 3. Illustration of PB-BF performance: (a) cdf of the normalized SNR gap after a fixed number of frames (R = 3, P/N0 = 14 dB), (b)
convergence time (in frames) versus target SNR (P/N0 =14 dB) for different network sizes, and (c) BER versus nominal SNR (R=3, 4).

noticeable improvements are observed for additive perturbations be-
yond 40 transmission frames (iterations). It is seen that initially (af-
ter 10 iterations) minGivens performs best; here, rapid improvement
is achieved since only a few rotations have to be checked. However,
if a small SNR gap has to be ensured with high probability, max-
Givens is preferable. For example, to achieve a normalized SNR gap
less than 11% in 90% of the cases, minGivens and maxGivens re-
quire 40 and 80 iterations, respectively. After 120 frames, an SNR
gap less than 5% is achieved in 99% of the cases with maxGivens
but only in 85% of the cases with minGivens. With additive pertur-
bations, initial convergence is poorer than with minGivens and the
SNR gap after many iterations is larger than with maxGivens.

Network Size. Next, we analyze the impact of the network size (i.e.,
number of relays R) on the convergence of PB-BF with minGivens
perturbations (N =2(R̄−1)) from the perspective of rapidly achiev-
ing a certain target SNR at the destination given that P/N0 =14 dB
(note that the sum relay power is independent of the network size).
Fig. 3(b) shows the convergence time versus target SNR. Here, we
define convergence time as the minimum number of frames required
to achieve the target SNR in 98% of the cases. Obviously, the achiev-
able SNR is higher for larger R due to increasing array gain (i.e.,
about 7.5 dB for R=3 and about 15 dB for R=10). However, very
large convergence times are implied if the target SNR approaches the
SNR limit. It is further seen that the curves for different R intersect,
and hence, for a given target SNR there is an optimum network size
minimizing the convergence time. For example, 7 dB target SNR can
most rapidly be obtained using R = 5 relays whereas the optimum
number of relays to achieve 10 dB is R=10.

BERPerformance. Bit error rate (BER) versus nominal SNRP/N0

for the case of R = 3 and R = 4 relays is shown in Fig. 3(c). Since
close-to-optimum performance is desired, we here use maxGivens
(20 and 42 rotation planes, respectively) and compare the results
with additive perturbation. As ultimate benchmarks, we also include
the results for optimum beamforming using the weights in (5) (la-
beled ’optimum-BF’) and a scheme without beamforming (‘no-BF’),
i.e., uniform power allocation αi =

p
P/R and no coherent combin-

ing. For each fading realization, we excluded the initial convergence
phase (first 60 frames) from the BER evaluation. It can be seen
that the angle adaptation allows maxGivens to closely approach op-
timum performance and to outperform additive PB-BF in the high-
SNR regime (e.g., 0.8 dB SNR gain at a BER of 10−4 for R = 3),
even though the complexity of maxGivens is smaller than that of ad-
ditive perturbations. Also, the curves show that our scheme is able
to fully exploit the spatial diversity offered by cooperative relaying

and offers significant gains over the no-BF case (e.g., 13 dB SNR
improvement at a BER of 10−2 for R=3).

5. CONCLUSION

We have proposed to use multiplicative perturbations based on
Givens rotations for distributed beamforming in wireless relay net-
works with 1-bit feedback. These perturbations are much better
matched to the non-Euclidean manifold underlying the problem
setup than additive perturbations considered previously. It further
allows direct step-size control in terms of rotation angles and is
computationally very efficient. In fact, the per-relay complexity is
independent of the network size. Numerical simulations showed that
our scheme approaches optimum performance arbitrarily close at a
satisfactory convergence speed.
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