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ABSTRACT

The use of cooperative schemes in wireless networks has recently
attracted much attention in scenarios where application of multiple-
antenna systems is impractical. In such scenarios, the requirement of
having full channel state information (CSI) at the receiver side can
be relaxed by using differential distributed (DD) transmission sche-
mes. However, in the DD schemes proposed so far, the decoding
complexity as well as the delay requirements increase with the num-
ber of relays. In this paper, we propose a low-rate feedback-based
DD approach (with one-bit feedback per relay) that enjoys full di-
versity, linear maximum likelihood (ML) decoding complexity, and
unrestrictive delay requirements. In addition, the proposed feedback
scheme does not require any CSI knowledge at the receiver, and its
implementation is simple. Computer simulations demonstrate sub-
stantial performance improvements of the proposed techniques as
compared to several popular cooperative transmission schemes.

Index Terms— Cooperative communications, differential dis-
tributed transmission, low-rate feedback, wireless relay networks

1. INTRODUCTION

The use of multiple-antenna systems can provide significant perfor-
mance gains in fading channel scenarios [1]. However, restrictions
in size and hardware costs can make the use of such systems im-
practical in wireless networks. Fortunately, using relays between the
transmitter and receiver can provide the so-called cooperative diver-
sity and, hence, can be a good alternative to using multiple antennas
at the transmitter and/or receiver. Several methods for cooperation
between network nodes have been proposed; see [2]-[7] and refer-
ences therein. Among these methods, techniques using the amplify-
and-forward relaying strategy are of practical interest because they
do not require signal decoding at the relays.

The use of space-time coding (originally developed for multiple-
antenna systems [8]) has been recently proposed in a distributed
fashion for relay networks with amplify-and-forward protocols [2],
[9]. In this cooperative strategy, the source terminal first transmits
the information symbols to the relays. Then, the relays encode their
received signals in a linear fashion and transmit them to the receiver.
This strategy results in a distributed space-time code (DSTC). When
DSTCs are used, the receiver is typically required to have complete
CSI to decode the signals. When no CSI is available at the receiver,
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differential distributed (DD) space-time coding schemes can be em-
ployed [10], [11]. In [11], several space-time codes including the
Alamouti code, the real square orthogonal space-time block codes
(OSTBCs), the Sp(2) code, and the circulant codes have been used to
develop DD techniques. The resulting DD Alamouti and real square
OSTBCs enjoy linear ML decoding complexity but they are applica-
ble only to quite a particular class of scenarios with a certain number
of relays. Moreover, only real-valued constellations can be used in
the real square OSTBC scheme. The DD Sp(2) code can be used
only in the particular case of four relays, and its decoding complex-
ity is higher than that of the DD OSTBC scheme. The DD circulant
code and the differential DSTC of [10] are applicable to any num-
ber of relay nodes, but their decoding complexity is high, and the
former scheme also suffers from a transmission rate loss. In [12],
four-group decodable differential DSTCs have been proposed that
are applicable to scenarios with any number of relays. Although
these codes offer a reduced decoding cost as compared to the full
ML decoder, their complexity still may be quite high, especially in
the case of more than four relay nodes. To address the problem of
decoding complexity and, at the same time, to improve the code rate
and performance in the differential transmission case (where no CSI
is available at the receiver), we propose to use a low-rate (one-bit)
feedback from the receiver to the relays. The proposed one-bit feed-
back scheme requires only the received power estimate and, there-
fore, its implementation is easy. The ML decoding complexity of the
proposed scheme is linear for any number of relays and, at the same
time, our scheme enjoys flexible delay requirements. Conceptually,
the proposed scheme is related to the idea of [13], where the case
of coherent relay networks has been addressed; see also [14]-[17]
where the idea of partial feedback has been applied to traditional
multiple-antenna systems.

2. SYSTEMMODEL

We consider a half-duplex wireless relay network with one single-
antenna transmitter, one single-antenna receiver andR single-anten-
na relay nodes. We assume that the direct link between the transmit-
ter and the receiver can not be established. We denote the channel
between the transmitter and the ith relay as fi, and between the ith
relay and the receiver as gi. The quasi-static flat-fading channel case
is considered. The channel block length is denoted as T . The coef-
ficients fi and gi are assumed to be independent random variables
with the probability density function (pdf) CN (0, 1), where CN (·, ·)
denotes the complex Gaussian pdf.

Let T information symbols s = [s1, . . . , sT ]T be drawn at the
transmitter from someM -point constellation S, where (·)T denotes
the transpose. Let the signal s be normalized as E{sHs} = 1, where
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(·)H and E{·} denote the Hermitian transpose and the statistical ex-
pectation, respectively. The transmission is done in two steps. In the
first step, from time 1 to T , the transmitter sends

√
P0T s, where P0

is the average power per channel use at the transmitter. The received
signal at the ith relay is given by

ri =
√

P0Tfis + vi

where vi is the noise vector at the ith relay. In the second step, from
time T + 1 to 2T , the ith relay sends the signal di to the receiver.
Assuming perfect synchronization, at the receiver we have

x =
R∑

i=1

gidi + n (1)

where x = [x1, . . . , xT ]T is the received signal and n =
[n1, . . . , nT ]T is the receiver noise. We assume that the entries of the
noise vectors vi and n are random variables with the pdf CN (0, 1).
The transmit signal di at each relay is assumed to be a linear func-
tion of its received signal and its conjugate, that is,

di =

√
Pi

P0 + 1
bi(Airi + Bir

∗
i )

=

√
P0PiT

P0 + 1
bi(fiAis + f∗

i Bis
∗)

+

√
Pi

P0 + 1
bi(Aivi + Biv

∗
i ) (2)

where Pi is the average transmit power at the ith relay, Ai and Bi

are T × T complex matrices, bi ∈ {−1, 1} is a coefficient selected
according to the value of the one-bit feedback, and (·)∗ denotes the
complex conjugate. Below, we consider the case where eitherAi =
O and Bi is unitary, or Bi = O and Ai is unitary, where O is the
T × T matrix of zeros. Let us introduce the following notations:

Ãi = Ai, f̃i = fi, ṽ = vi, s̃i = s, ifBi = O, (3)
Ãi = Bi, f̃i = f∗

i , ṽ = v∗
i , s̃i = s∗, ifAi = O. (4)

Using (1)-(4), we have

x = S(p � h) + w (5)

where
S � [Ã1s̃1 . . . ÃRs̃R]

is the distributed space-time codeword,

h = [h1, . . . , hR]T � [f̃1g1, . . . , f̃RgR]T

is the equivalent channel vector,

w = [w1, . . . , wT ]T �
R∑

i=1

√
Pi

P0 + 1
bigiÃiṽi + n (6)

is the equivalent noise vector,

p �
[√

P0P1T

P0 + 1
b1, . . . ,

√
P0PRT

P0 + 1
bR

]T

and � denotes the Schur-Hadamard matrix product.

3. DIFFERENTIAL TRANSMISSION

In this section, our low-rate feedback-based differential transmission
scheme will be introduced. The essence of this scheme is, based on
relay transmissions, to select at the receiver proper integer values of
bi (i = 1, . . . , R), and then to feed these values back to the relays
using one-bit feedback between the receiver and each relay. It is
assumed that p � h is not known at the receiver.

3.1. Using One-Bit Feedback

Let us first consider the case T = 1 in which the matrices Ai and
Bi are scalars and assume thatAi = 1 and Bi = 0 (the case when
Ai and Bi are matrices will be considered later). Correspondingly,
x, vi, n,w and s = sl are scalars as well where {sl} is a stream of
symbols to be transmitted during the channel coherence time. These
symbols are assumed to be selected from some constant-modulo
constellation S, i.e., |sl| = 1. The symbols sl can be differentially
encoded as

ul = ul−1sl, u0 = 1

where ul is the actual transmitted symbol and u0 is the first trans-
mitted signal. Using (5), the received signal is given by

xl = 1T
R(p � h)ul + wl

where 1R is the R × 1 column vector of ones. The ML symbol
estimate can be obtained from maximizing [1]

Re {xl−1x
∗
l sl} (7)

over sl ∈ S, whereRe {·} denotes the real part. From (7), the power
of signal component contained in the product xl−1x

∗
l is given by

Ps =
(
1T

R(p � h)
) (

1T
R(p � h)

)∗

=

R∑
i=1

ρi,i|figi|2︸ ︷︷ ︸
γ

+

R∑
i,j=1
i�=j

ρi,jbibjRe
{
figif

∗
j g∗

j

}
︸ ︷︷ ︸

β

(8)

where
ρi,j �

√
PiPjP0T/(P0 + 1).

Generally, the second term in (8) can take negative values, making
the received signal power low. This reduction in the signal power
yields some loss in diversity. However, we will show that the values
of bi and bj in (8) can always be chosen so that β ≥ 0. More-
over, it can be proved that if β ≥ 0, then the diversity order of
R

(
1 − log log P

log P

)
can be achieved where

P =

R∑
i=0

Pi

is the network total power. To obtain positive values of β, the follow-
ing simple sequential feedback bit assignment scheme is proposed.
Beginning with b1 = 1, the values b2 = ±1 have to be examined to
select b2 at the receiver that results in the largest Ps. This yields

b2 = sign (Re {f1g1f
∗
2 g∗

2})
where sign (a) is equal to 1 if a ≥ 0, and is equal to −1 otherwise.
Subsequently, the values b3 = ±1 have to be examined to select b3

at the receiver that results in the largest Ps, that is,

b3 = sign (ρ1,3Re {f1g1f
∗
3 g∗

3} + b2ρ2,3Re {f2g2f
∗
3 g∗

3}) .
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The same greedy algorithm can be continued to compute bi for all
indices i > 2, so that the contribution toPs in each step is maximum.
This is equivalent to selecting bi as

bi = sign

(
i−1∑
j=1

bjρj,iRe {fjgjf
∗
i g∗

i }
)

.

In general, as the above process does not necessarily maximize β as
a function of bi ∈ {−1, 1}, it may only result in suboptimal values
for bi. However, its main advantage is in its simplicity: it does not
require any knowledge of the channel coefficients at the receiver and
needs only one bit of feedback to deliver the selected bi from the
receiver to the ith relay node. The overall transmission strategy for
selecting bi can be summarized as follows:
1. Set bi = 1, i = 1, . . . , R. Transmit u0 from the source to
obtain x1 = 1T

R(p � h)u0 + w1 at the receiver.
2. For j = 2, . . . , R:

• At the jth relay, set bj = −1 and, using (2), obtain the
signal dj to be transmitted from this particular relay.
This corresponds to updating the output of the jth relay.

• Transmit signals from all relays to obtain xj = 1T
R(p�

h)u0 + wj at the receiver.
• If |xj |2 > |xj−1|2, then feed “1” from the receiver
back to the relay; otherwise feed “0” back to the relay.
In the latter case, set xj = xj−1.

• If the received feedback at the jth relay is 1, then select
bj = −1. Otherwise, select bj = 1.

3.2. Extended Distributed Alamouti Code

The feedback rate of the proposed scheme can be further reduced
by using one feedback bit per each pair of relays, and adopting the
extended distributed Alamouti code as presented in [13]. In the se-
quel, the derivations for the case of even number of relays R = 2K
will be presented, where K is a positive integer, and T = 2. Note
that our results can be straightforwardly extended to the case of odd
number of relays as well.

At the transmitter, a unitary matrix Sl is formed with the infor-
mation symbols s2l−1 and s2l scaled by 1/

√
2:

Sl =
1√
2

[
s2l−1 −s∗2l

s2l s∗2l−1

]
. (9)

The differential encoding

ul = Slul−1 (10)

is used at the transmitter that sends the vector

ul = [u2l−1 u2l]
T

to relays where l denotes the block number. The first vector ul can
be chosen as u0 = [1, 0]T . The relays use the following matrices to
form the transmitted signal:

Ã2k−1 = I2, B2k−1 = O, Ã2k =

[
0 −1
1 0

]
, A2k = O.

As a result, the following equivalent relation can be obtained

xl = SlUl−1

(
K∑

k=1

pk � hk

)
+ wl (11)

where

Ul−1 =

[
u2l−3 −u∗

2l−2

u2l−2 u∗
2l−3

]
, U0 = I2

pk =

[√
P0P2k−1T

P0 + 1
bk,

√
P0P2kT

P0 + 1
bk

]T

hk = [f2k−1g2k−1, f
∗
2kg2k]T .

The ML decoding amounts to maximizing [1]

Re
{
tr

(
xl−1x

H
l Sl

)}
(12)

over s2l−1, s2l ∈ S, where tr(·) stands for the trace of a matrix. Note
that detection can be done symbol-by-symbol. As in the previous
scheme, the diversity order of R

(
1 − log log P

log P

)
can be achieved if

the values of bk are selected so that βa ≥ 0 where

βa =
K∑

i,j=1
i�=j

bibjRe
{
ρ2i−1,2j−1h2i−1h

∗
2j−1 + ρ2i,2jh2ih

∗
2j

}
.

The selection of bk, k = 1, . . . , K can be made in the following
way:
1. Set bi = 1, i = 1, . . . , K . Transmit u0 from the source to
obtain x1 = U0

(∑K
k=1 pk � hk

)
+ w1 at the receiver.

2. For j = 2, . . . , K:
• At the (2j − 1)th and (2j)th relays, set bj = −1 and,
using (2), obtain the signals d2j−1 and d2j to be trans-
mitted from this relay pair. This corresponds to updat-
ing the output of the jth relay pair.

• Transmit signals from all relays to obtain xj =

U0

(∑K
k=1 pk � hk

)
+ wj at the receiver.

• If ‖xj‖2 ≥ ‖xj−1‖2, then feed “1” from the receiver
back to the relay; otherwise feed “0” back to the relay.
In the latter case, set xj = xj−1.

• If the received feedback at the (2j − 1)th and (2j)th
relays is 1 then select bj = −1. Otherwise, select bj =
1.

4. SIMULATIONS

We assume a network with R = 4 relays and plot the block er-
ror rate (BLER) versus the total transmitted power P . The optimal
power allocation is used that maximizes the expected receive signal-
to-noise ratio (SNR), that is, P0 = P/2 and Pi = P/2R [11].
In Fig. 1, the proposed schemes are compared with the DD Sp(2)
code of [11], the coherent distributed quasi-orthogonal space-time
block code (QOSTBC) of [18] (this code requires the complete CSI
knowledge at the receiver), and the relay selection technique with
differential transmission in which the relay with the largest receive
power is selected (this approach requires a total of 2 feedback bits).
In the DD Sp(2) approach, we use the 3-PSK constellation for the
first two symbols and the 5-PSK constellation for the other two sym-
bols to achieve the total rate of 0.9767 bpcu. The other schemes use
QPSK symbol constellations to achieve the total rate of 1 bpcu. We
refer to the schemes proposed in Sec. 3.1 and Sec. 3.2 as “proposed
scheme #1” and “proposed scheme #2”, respectively. In the case of
scheme #1, for the sake of fair comparison with the DD Sp(2) ap-
proach, BLER is computed using four-symbol blocks. For the same
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Fig. 1. BLER versus total network power.

reason, a block of two two-symbol subblocks is used in scheme #2 to
compute BLER. As follows from Fig. 1, the proposed two schemes
outperform the DD Sp(2) code and the relay selection approach, and
their performance is very close to the distributed QOSTBC (which
requires the full CSI knowledge). These improvements come at the
price of three bits and one bit of the total feedback for the proposed
schemes #1 and #2, respectively. Also, note that scheme #1 requires
(R+1)+(R−1) = 8 auxiliary time-slots before starting the trans-
mission of the information bits. In turn, scheme #2 and the DD Sp(2)
approach require (2K + 2) + (K − 1) = 7 and 2R = 8 auxiliary
time-slots, respectively.

5. CONCLUSIONS

In this paper, a novel low-rate feedback-based distributed differen-
tial approach has been proposed for cooperative transmission in re-
lay networks. The proposed feedback schemes do not require any
CSI knowledge at the receiver and have simple implementation. In
particular, our techniques achieve maximum diversity offered by the
relay network, enjoy low-complexity linear ML decoding, and avoid
long decoding delays. Moreover, they are applicable to any number
of relays. Simulations validate remarkable performance improve-
ments of the proposed techniques as compared to several popular
distributed cooperative transmission schemes.
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