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ABSTRACT

Selection relaying is a promising technique for practical implemen-
tation of cooperative systems with multiple relays. However, to se-
lect the best relay, globe channel knowledge is required at the se-
lecting entity. In this paper, we consider the relay selection problem
in dual-hop amplify-and-forward (AF) communication systems with
partial channel state information (CSI). We present relay selection
strategies aiming at minimizing the outage probability with differ-
ent kinds of channel knowledge available, including perfect, statis-
tical and quantized CSI. Simulation results show that near optimal
performance is achievable with a few bits feedback to the selecting
entity. Thus the signaling overhead of relay selection can be greatly
reduced with quantized CSI feedback.

Index Terms— Wireless relay networks, amplify-and-forward,
relay selection, partial channel information.

1. INTRODUCTION

Wireless relay networks have attracted a lot of research attention in
recent years [1][2][3]. The benefits of relayed transmission include
increasing the system capacity, reducing the transmit power, and ex-
tending the cover range. Generally, there are two kinds of relay-
ing schemes, amplify-and-forward (AF) relaying and decode-and-
forward (DF) relaying. The AF relaying protocol is of more interest
due to its low complexity.

In an AF system with multiple relays, several relaying proto-
cols have been proposed in the literature, including repetition-based
relaying [4], distributed space-time coding (DSTC) [5], and selec-
tion relaying [6]. For the repetition-based protocol, the relays for-
ward the received signal in orthogonal channels (e.g., time slots),
which leads to low bandwidth efficiency. In [5], the authors proposed
DSTC relaying where linear dispersion space-time code was applied
to wireless relay networks to enhance the system performance. How-
ever, DSTC requires perfect time synchronization among the relays,
which is a crucial issue for practical systems. A selection relaying
scheme was introduced in [6][7][8], where only one of the relays is
selected for signal forwarding according to the instantaneous CSI of
all the channels. It is shown in [6] and [7] that the selection relay-
ing scheme achieves lower outage probability and error probability
than the repetition-based orthogonal relaying. In [8], the authors
proposed a distributed relay selection scheme for dual-hop AF sys-
tems. However, such distributed scheme requires synchronization
among all the relays, and is difficult to realize in practical systems.
On the other hand, centralized scheme in [6] requires globe knowl-
edge of all the channels to select the best relay, which may result in
considerable protocol overhead. In [9], the authors considered the
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relay selection problem in AF systems when only the instantaneous
source-relay channel information is available at the selecting entity.
However, simulation results show that the achievable diversity order
is limited to be one regardless of the number of relays. Relay selec-
tion with partial CSI has also been investigated in [10] for dual-hop
DF systems.

In this paper, we study the relay selection problem in dual-hop
AF systems with partial channel state information. We evaluate the
cumulative distribution function (CDF) of the end-to-end signal-to-
noise ratio (SNR) of the AF system with different kinds of CSI avail-
able, including perfect, statistical and quantized CSI. Based on these
CDFs, optimal relay selection schemes are presented to minimize
the outage probability. In case of when quantized CSI is available,
we propose a target rate based quantizer to partition the SNR range.
It is shown that with a few bits feedback, the performance of the AF
system with quantized CSI is almost the same as that with perfect
CSI.

2. SYSTEM MODEL

We consider a dual-hop system where the source communicates with
the destination with the help of K relays. For simplicity, we assume
there is no direct link between the source and the destination. All the
nodes are half-duplex and can not transmit and receive simultane-
ously. The relayed transmission is performed in two time slots as in
[6]. In the first slot, the source broadcasts the data to the K relays. In
the second time slot, one of these K relays is selected for forwarding
the received signal to the destination. We assume the relay selection
is done at the source, which is possible in the downlink transmission,
where the source is the base station (BS) and the destination is the
mobile station (MS). In order to keep the mobile station as simple as
possible, the BS determines which relay will be active in the second
time slot.

If the kth relay is selected for transmission, the end-to-end SNR
of the dual-hop AF system is given by [6]

γk =
γs,kγk,d

γs,k + γk,d + 1
(1)

where γs,k is the SNR of the channel between the source and the kth

relay, and γk,d is the SNR of the channel between the kth relay and
the destination. All the channels are assumed to be block flat-fading
and Rayleigh distributed. The probability density function (PDF)
and the CDF of γi,j , i, j = s, d, 1, ..., K, are given by

fγi,j (γ) = (1/γ̄i,j)exp(−γ/γ̄i,j) (2)

and
Fγi,j (γ) = 1 − exp(−γ/γ̄i,j), (3)

respectively, where γ̄i,j denotes the average SNR of the channel be-
tween node i and node j.
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3. RELAY SELECTION WITH PARTIAL CSI

In this section, we study the relay selection strategy to minimize
the outage probability. When the kth relay is selected, the mutual
information is given by

Ck =
1

2
log2(1 + γk) (4)

The probability that the mutual information falls below the target
rate R when the kth relay is selected is given by

Pout(Ck < R) = P (γk < 22R − 1) (5)

To minimize the outage probability, we have to chose the relay
for which the outage probability conditioned on the available CSI at
the selecting entity (the source) is minimized

kopt = arg min
k

Pout(Ck < R|CSI)

= arg min
k

Fγk(γth|CSI) (6)

where γth = 22R−1, and Fγk (γ|CSI) is the CDF of γk conditioned
on the available CSI at the source. If perfect CSI of all the channels
is available, i.e., γs,k and γk,d are perfect known by the source, it
is apparent that select the relay with minimal outage probability is
equivalent to select the relay with the maximal SNR

kopt = arg max
k

γk (7)

3.1. Selection with Perfect and Statistical CSI

In practical systems, it is unrealistic for the source to have perfect
knowledge of all the channels, especially those between the relays
and the destination. In this subsection, we consider the case that
the channels between the source and the relays are perfect known ,
while only statistical knowledge of the relay-destination channels is
available at the source.

In this case, γs,k, and γ̄k,d, k = 1, 2, ..., K , are known by the
source. It is easy to show that the CDF of γk conditioned on γs,k

and γ̄k,d is given by

Fγk(γ|γs,k, γ̄k,d) =

(
1 − exp

“
− γ(γs,k+1)

γ̄k,d(γs,k−γ)

”
γ < γs,k

1 γ ≥ γs,k

(8)
The optimal relay that with the minimal expected outage proba-

bility can be determined by substituting (8) into (6)

kopt = arg min
k

Fγk (γth|γs,k, γ̄k,d) (9)

3.2. Selection with Perfect and Quantized CSI

In the previous section, we assumed that only the statistical CSI of
the relay-destination channels is available. In such case, only very
low-rate feedback is required, which can greatly reduce the signal-
ing overhead. However, as we will show in Section V, severe perfor-
mance loss is observed in this case. As a tradeoff between signaling
overhead and system performance, we here consider another case
that the source-relay channels are perfectly known whereas quan-
tized and statistical CSI are available for the relay-destination chan-
nels.

Without loss of generality, we assume that a N-bit quantizer with
2N quantization levels is employed for each relay-destination chan-
nel. The whole SNR range is subdivided into 2N sections, and the

index of the section that contains the instantaneous SNR value is
feedback to the source.

Let the section containing γk,d be Λk = [ξk,q, ξk,q+1) for
the channel between the kth relay and the destination, where
ξk,q and ξk,q+1 is the lower and upper bound of the qth section,
q = 1, 2, ..., 2N . Then the conditional PDF and CDF of γk,d given
Λk are given by

fγk,d (γ|Λk) =

8><
>:

0 γ < ξk,q
fγk,d

(γ)

Fγk,d
(ξk,q+1)−Fγk,d

(ξk,q)
ξk,q ≤ γ < ξk,q+1

0 γ ≥ ξk,q+1

(10)
and

Fγk,d (γ|Λk) =

8><
>:

0 γ < ξk,q

Fγk,d
(γ)−Fγk,d(ξk,q)

Fγk,d
(ξk,q+1)−Fγk,d

(ξk,q)
ξk,q ≤ γ < ξk,q+1

1 γ ≥ ξk,q+1

(11)
respectively, where fγk,d(γ) and Fγk,d(γ) are given in (2) and (3).

Since γs,k is known by the source, the CDF of γk conditioned
on γs,k and Λk is

Fγk (γ|γs,k, Λk) =

8<
: Fγk,d

„
γ(γs,k+1)

γs,k−γ
|Λk

«
γ < γs,k

1 γ ≥ γs,k

(12)

After some manipulations, (12) can be expressed as

Fγk,d (γ|γs,k, Λk) =8<
:

0 γ < g1 (γs,k, ξk,q)
Jk(γ) g1 (γs,k, ξk,q) ≤ γ < g1 (γs,k, ξk,q+1)
1 γ ≥ g1 (γs,k, ξk,q+1)

(13)

where g1 (x, y)
Δ
= xy/(x + y + 1),

Jk(γ) = Ak,q

“
e−ξk,q/γ̄k,d − e−γ(γs,k+1)/(γ̄k,d(γs,k−γ))

”
, and

Ak,q = (exp (−ξk,q/γ̄k,d) − exp (−ξk,q+1/γ̄k,d))−1
.

As before, the relay selected for transmission can be easily de-
termined by substituting (13) into (6).

3.3. Selection with Quantized CSI of all channels

To further reduce the signaling overhead, we here consider a more
general case that only quantized and statistical CSI of all the chan-
nels are available at the source. If the feedback information Ψk of
the source-kth relay channel indicates that γs,k ∈ [φk,�, φk,�+1),
then the conditional PDF and CDF of γs,k are given by

fγs,k (γ|Ψk) =

8><
>:

0 γ < φk,�
fγs,k

(γ)

Fγs,k
(φk,�+1)−Fγs,k

(φk,�)
φk,� ≤ γ < φk,�+1

0 γ ≥ φk,�+1

(14)
and

Fγs,k (γ|Ψk) =

8><
>:

0 γ < φk,�

Fγs,k
(γ)−Fγs,k (φk,�)

Fγs,k
(φk,�+1)−Fγs,k

(φk,�)
φk,� ≤ γ < φk,�+1

1 γ ≥ φk,�+1

(15)
respectively.
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Based on (11) and (15), the CDF of γk conditioned on Ψk and
Λk is found to be (see the appendix)

Fγk (γ|Ψk, Λk) =8><
>:

0 γ < g1 (φk,�, ξk,q)
1 − Ik(γ)

g1 (φk,�, ξk,q) ≤ γ < g1 (φk,�+1, ξk,q+1)
1 γ ≥ g1 (φk,�+1, ξk,q+1)

(16)

where

Ik(γ) = Bk,�

 
e
− βk(γ)

γ̄s,k − e
− φk,�+1

γ̄s,k

!

+Bk,�

 
1 − Ak,qe

− ξk,q
γ̄k,d

!„
e
− αk(γ)

γ̄s,k − e
− βk(γ)

γ̄s,k

«

+Ak,qBk,�

s
γ (1 + γ)

γ̄s,kγ̄k,d
e
− γ

γ̄s,k
− γ

γ̄s,d

Z μk(γ)(βk(γ)−γ)

μk(γ)(αk(γ)−γ)

exp

 
−
s

γ (γ + 1)

γ̄s,kγ̄k,d

„
1

x
+ x

«!
dx (17)

with αk (γ) = max (φk,�, g2 (γ, ξk,q+1)),

βk (γ) = min (φk,�+1, g2 (γ, ξk,q)), μk (γ) =
q

γ̄k,d

γ̄s,kγ(γ+1)
,

and Bk,� = (exp (−φk,�/γ̄s,k) − exp (−φk,�+1/γ̄s,k))−1
.

4. TARGET RATE BASED QUANTIZATION

In section III, we presented relay selection strategies when quantized
and statistical CSI are available. In this section, we propose a target
rate based quantizer to partition the SNR range. Notice that the end-
to-end SNR γk can be upper bounded as [11]

γk =
γs,kγk,d

γs,k + γk,d + 1
≤ min(γs,k, γk,d). (18)

The equality holds if and only if γs,k = 0 or γk,d = 0. Thus
if γs,k or γk,d is small than the threshold SNR γth, it follows im-
mediately that the end-to-end SNR γk < γth, i.e., an outage occurs.
So it would not make any sense to have more than one quantiza-
tion section for SNRs below γth. On the other hand, if both γs,k

and γk,d are larger than or equal to γth, it is still possible that γk is
smaller than γth. So it is necessary to partition the SNR above γth.
In the following, we take γk,d as an example to illustrate the pro-
posed quantization scheme. For the N-bit quantizer with 2N quan-
tization levels, the quantization sections are [ξk,0, ξk,1), [ξk,1, ξk,2),
... , [ξk,2N−1, ξk,2N ), where ξk,0 = 0, ξk,2N = +∞. As discussed
before, the upper bound for the first section is set to be ξk,1 = γth.
For the other sections, we use a simple equiprobable SNR partition
scheme, in which the probability that the instantaneous SNR value
falls in each section is the same for all sections. The bound for the
qth section, q = 2, 3, ..., 2N − 1, can be determined by

Fγk,d(ξk,q) = Fγk,d(ξk,1) +
q − 1

2N − 1
(1 − Fγk,d(ξk,1)). (19)

Substituting (3) into (19) , we have

ξk,q = γth + γ̄k,d log

„
2N − 1

2N − q

«
. (20)
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Fig. 1. Outage probability of a 2-relay AF system with different
kinds of CSI available, R = 1bps/Hz.

5. SIMULATION RESULTS

During simulation, we consider a symmetric network that the chan-
nels between the source and the relays are independent identically
distributed (i.i.d.), γ̄s,k = γ̄s,r, ∀k, and those between the relays
and the destination are also i.i.d, γ̄k,d = γ̄r,d, ∀k. Furthermore, we
assume the relays are close to the destination and the mean gains of
the relay-destination channels are 10dB higher than the mean gains
of the source-relay channels.

Fig. 1 compares the outage performance of a 2-relay AF system
with different kinds of CSI available. The target information rate is
R = 1 bit/s/Hz. It can be seen that for the perfect/statistical case,
severe performance loss is observed in the high SNR region. For ex-
ample, at an outage probability of 3 × 10−4, there is more than 7dB
performance loss as compared with the perfect/perfect CSI case. For
the perfect/quantized case, only a single feedback bit is sufficient
to achieve almost the same performance as in case that perfect CSI
of all the channels is available. For the quantized/quantized case
with single bit feedback for each channel, there is only 1.5dB per-
formance loss at an outage probability of 10−3. The gap reduces to
be within 0.5dB when there are two bits feedback.

Fig. 2 shows the outage probability for AF systems with differ-
ent target rates when SNR=24dB. As can be seen, much higher rates
can be achieved with better CSI for lower outage probability. For in-
stance, at an outage probability of 10−3, the achievable information
rate is 1bps/Hz, 1.6bps/Hz, 2.35bps/Hz and 2.7bps/Hz for the per-
fect/statistical, perfect/quantized (1bit), quantized/quantized (1bit)
and perfect/perfect case in a 4-relay AF system, respectively. While
for higher target rates, the gaps between these four cases are small.
All these results show that the quantized/quantized case provides a
good trade off between signaling overhead and system performance,
and is very attractive for practical implementation.

6. CONCLUSION

We presented relay selection strategies for dual-hop AF systems with
various different kinds of CSI available at the selecting entity. A tar-
get rate based quantizer is also proposed to partition the SNR range
when quantized CSI is available. Computer simulations are carried
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Fig. 2. Outage probability as a function of target information rate for
SNR = 24dB.

out to validate the propose strategies. It is shown that only a few
quantization bits are required for the quantized/quantized case to
achieve near optimal outage performance as in case when perfect
CSI is available. These simulation results suggest that considerable
signaling overhead can be reduced for dual-hop AF systems with
quantized CSI based selection relaying.
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Appendix
Since the feedback information indicates that γs,k ∈ [φk,�, φk,�+1),
γk,d ∈ [ξk,q, ξk,q+1), then the end-to-end SNR γk is bounded by

g1(φk,�, ξk,q) ≤ γk = g1(γs,k, γk,d) < g1(φk,�+1, ξk,q+1). (21)

Thus we have

Fγk (γ|Ψk, Λk) =

j
0 γ < g1 (φk,l, ξk,q)
1 γ ≥ g1 (φk,l+1, ξk,q+1)

. (22)

When g1(φk,�, ξk,q) ≤ γk < g1(φk,�+1, ξk,q+1), the CDF of
γk is given by

Fγk (γ|Ψk, Λk) = P

„
γs,kγk,d

γs,k + γk,d + 1
< γ|Ψk, Λk

«

=

Z γ

0

P

„
γk,d >

γ (x + 1)

x − γ
|Λk

«
fγs,k (x|Ψk) dx

+

Z +∞

γ

P

„
γk,d <

γ (x + 1)

x − γ
|Λk

«
fγs,k (x|Ψk) dx

=

Z γ

0

fγs,k (x|Ψk) dx

+

Z +∞

γ

»
1 − P

„
γk,d ≥ γ (x + 1)

x − γ
|Λk

«–
fγs,k (x|Ψk) dx

= 1 − Ik(γ) (23)

where

Ik(γ) =

Z +∞

γ

ˆ
1 − Fγk,d (g2 (γ, x) |Λk)

˜
fγs,k (x|Ψk) dx (24)

with g2 (x, y)
Δ
= x (y + 1) / (y − x).

When x < g2 (γ, ξk,q+1), g2 (γ, x) > g2 (γ, g2 (γ, ξk,q+1)) =
ξk,q+1, thus for x < g2 (γ, ξk,q+1), Fγk,d (g2 (γ, x) |Λk) = 1.
Also, when x < φk,� or x ≥ φk,�+1 , fγs,k (x|Ψk) = 0, then
Ik(γ) can be further simplified as

Ik(γ) =

Z βk(γ)

αk(γ)

ˆ
1 − Fγk,d (g2 (γ, x) |Λk)

˜
fγs,k (x|Ψk) dx

+

Z φk,�+1

βk(γ)

fγs,k (x|Ψk) dx (25)

where αk (γ) = max (φk,l, g2 (γ, ξk,q+1)),
βk (γ) = min (φk,l+1, g2 (γ, ξk,q)).

Finally, Substituting (11) and (14) into (25) yields the desired
results in (16) and (17).
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