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ABSTRACT

Detection of OFDM transmissions with interspersed pilot symbols is
considered. A hard output detection algorithm developed by Taricco
et. al. for flat fading channels is extended for this frequency selec-
tive scenario. In the investigated systems with 128 subcarriers, this
algorithm outperforms conventional approaches and performs close
to a genie aided receiver even with the use of a single pilot symbol
for the whole frame. Furthermore, a novel soft output generating al-
gorithm is developed, which is more suitable for channel coded sys-
tems. The resultant algorithm is capable of detecting coded OFDM
transmissions with fewer pilot symbols than that required for noise-
less channel identification.

Index Terms— Dispersive channels, Signal detection

1. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) is the system
of choice for many upcoming communications standards. For coher-
ent detection of OFDM transmissions, pilot symbols are transmitted
on some of the subcarriers [1]. While a pilot-based channel estima-
tion stage followed by a symbol detection stage based on the esti-
mated channels is the conventional approach at the receiver [2], con-
sideration of these two stages together leads to improved detection
performance [3]. Motivated by the works of Taricco et. al. [4], [5]
we here develop hard and soft output algorithms for such receivers.
While the complexities of these algorithms are linear in the num-
ber of subcarriers, they outperform conventional receivers when the
number of pilot carrying subcarriers is low.

2. PROBLEM STATEMENT

Let us consider anN -subcarrier OFDM system and let the frequency
domain symbol vector for some particular OFDM frame be x =
(x1, x2, ..., xN)T . Notations (·)T , (·)H and (·)−1 are used to de-
note the transpose, conjugate transpose and the inverse of a matrix,
respectively. Bold faced lower and upper case letters denote vec-
tors and matrices, respectively. Above symbol vector is assumed to
consist of both data and pilots. That is, the pilots are interspersed
with the data and for convenience we assume that the first subcarrier
transmits a pilot symbol. Let the data and pilot carrying subcarriers
be denoted by the setsD and P , respectively. Then, |D|+ |P| = N ,
where |·| denotes the cardinality of a set. We assume that all the
subcarriers transmit symbols from some modulation alphabetQ and
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that the pilot subcarriers carry the symbol ωpilot ∈ Q, for conve-
nience. Also let xp denote a vector containing the symbols xv for
v ∈ P .

Now let us consider the modelling of the wireless channel. We
consider the frequency domain channel fading coefficient on subcar-
rier v to be fv and f = (f1, f2, ..., fN)T . Taking the time domain
channel impulse response to contain L (< N ) symbol spaced coef-
ficients, denoted as: hL = (h1, h2, ..., hL)T , let Θ be the N × L
discrete Fourier transform matrix with the (n, l)th element being
e−j

2π(n−1)(l−1)
N such that f = ΘhL [3]. Let y = (y1, y2, ..., yN )T

and n = (n1, n2, ..., nN )T be the frequency domain signal and
noise vectors manifesting at the receiver, respectively. With a proper
cyclic prefix at the transmitter to generate a circulant equivalent
channel at the receiver, and lettingX = diag (x), we have

y = XΘhL + n . (1)

Assuming a Rayleigh fading scenario, we model hL = R
1
2 h0 with

h0 having a zero mean circularly symmetric complex Gaussian (ZM-
CSCG) distribution with covariance matrix IL, where IL is theL×L
identity matrix and R = E

˘
hLhH

L

¯
. Essentially, R defines the

inter-tap correlations of the impulse response. For power normal-
isation, we take Trace (R) = 1 and E

˘
nnH

¯
= N0IN . The

resultant system model is y = XΘR
1
2 h0 + n. Assuming that the

receiver knows the probability distribution of the channel, which is
essentially determined by R and N0, and the pilot symbols xp, we
address two problems in this paper. The first is the maximum likeli-
hood sequence detection, or the computation of

arg max
x

p (y |x;xp,R, N0 ) . (2)

The other is the computation of a posteriori symbol probability dis-
tributions:

p (xv |y;xp,R, N0 ) for each v ∈ D. (3)

In the following, we develop approximate solutions to the above
problems that have linear complexity in N .

3. THE ALGORITHM FOR SEQUENCE DETECTION

Optimal sequence detection is the computation of

x̂ = arg max
x

Eh0p (y |x,h0;xp, R, N0 ) .

This computation, due to its averaging over the channel distribution,
indicates the avoidance of an explicit channel estimation stage. Since
the additive noise is ZMCSCG distributed,

x̂ = arg max
x

Eh0

j
exp

»
− 1

N0
(y − k)H (y − k)

–ff
,
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where k = XΘR
1
2 h0. Letting b = −R

1
2 ΘHXHy

N0
and A =

R
1
2 ΘHXHXΘR

1
2

N0
, we have,

x̂ = arg max
x

Eh0

n
exp

h
−
“
hH

0 Ah0 + hH
0 b + bHh0

”io
.

As shown in [4], [5], this expectation can be solved in closed form:

x̂ = arg max
x

exp
˘
bH (IL + A)−1 b

¯
det (IL + A)

= arg max
x

n
bH (IL + A)−1 b − log det (IL + A)

o
.(4)

As illustrated in [3] for constant amplitude modulations, exact com-
putation of (4) incurs a complexity which is exponential in N . In
[6], this complexity was avoided by resorting to a sub-optimal per
symbol decoding scheme. Here we follow the approach of [4], to
develop a sequential algorithm to find this maximum likelihood so-
lution. With a Markovian assumption, this approach enabled the
development of a O (N) complexity algorithm with excellent per-
formance. We assume that R

1
2 is invertible, although this condi-

tion can be relaxed since the final algorithms do not involve any ex-
plicit matrix inversions. We use notation x1:v to denote the vector
(x1, x2, ..., xv)T . WithK = ΘHXHXΘ

N0
and

ζ (x1:N) =
1

N2
0

yHXΘ
`
R−1 + K

´−1
ΘHXHy

λ (x1:N) = (−1) log det
`
R−1 + K

´
,

the objective function to be maximised is μ (x1:N) = ζ (x1:N) +
λ (x1:N). For the development of a sequential maximiser for this
objective function, for each v ∈ {1, ..., N}, we need to find a break-
down such that

μ (x1:v) = μ (x1:v−1) + Δμ (x1:v−1, xv) . (5)

The next Section builds a set of recursions which facilitates the se-
quential computations of the above metric differencesΔμ (x1:v−1, xv)
for each v ∈ {1, ..., N}.

3.1. Set of recursions

Decomposing the matrix Θ as ΘH = [θ1 θ2 · · · θN ], let Θv be
defined byΘH

v = [θ1 · · · θv ]. WithXv = diag (x1:v) andKv =
ΘH

v XH
v XvΘv

N0
, we have

μ (x1:v) = ζ (x1:v) + λ (x1:v) . (6)

Here,

ζ (x1:v) =
1

N2
0

yH
1:vXvΘv

`
R−1 + Kv

´−1
ΘH

v XH
v y1:v

λ (x1:v) = − log det
`
R−1 + Kv

´
.

The log-determinant term can be rewritten as

λ (x1:v) =

− log det

  
R−1 +

1

N0

v−1X
i=1

θiθ
H
i |xi|2

!
+ θvθH

v |xv|2
!

.

Using the determinant lemma [7]

det
“
A + uvH

”
=
“
1 + vHA−1u

”
det (A) ,

and lettingΩ (x1:v−1) =

„
R−1 + 1

N0

v−1P
i=1

θiθ
H
i |xi|2

«−1

,

λ (x1:v) = λ (x1:v−1) − log

„
1 +

|xv|2
N0

θH
v Ω (x1:v−1) θv

«
.

Using the matrix inversion lemma [7]

“
A + uvH

”−1

= A−1 − A−1uvHA−1

1 + vHA−1u
,

and defining Ξ (x1:v) = |xv|2
N0

Ω(x1:v−1)θvθH
v Ω(x1:v−1)

1+
|xv |2

N0
θH

v Ω(x1:v−1)θv

, we can

also write,

Ω (x1:v) =

  
R−1 +

1

N0

v−1X
i=1

θiθ
H
i |xi|2

!
+ θvθH

v |xv|2
!−1

= Ω (x1:v−1) − Ξ (x1:v) .

Now, consider the ζ (x1:v) term. With r1:v = XH
v y1:v, we have

ζ (x1:v) =
1

N2
0

rH
1:vΘv {Ω (x1:v−1) − Ξ (x1:v)}ΘH

v r1:v.

Letting c (x1:v) = ΘH
v r1:v = c (x1:v−1) + x∗vyvθv , one can also

expand the difference N2
0 {ζ (x1:v) − ζ (x1:v−1)} as

|rv|2 θH
v Ω (x1:v−1) θv + 2�

“
c (x1:v−1)

H Ω (x1:v−1) θvrv

”
− c (x1:v)H Ξ (x1:v) c (x1:v) .

Finally, using (5), (6), and the above derivations, the set of recur-
sions:

c (x1:v) = c (x1:v−1) + x∗vyvθv (7)

Ξ (x1:v) =
|xv|2
N0

Ω (x1:v−1) θvθH
v Ω (x1:v−1)

1 + |xv |2
N0

θH
v Ω (x1:v−1) θv

(8)

Ω (x1:v) = Ω (x1:v−1) − Ξ (x1:v) , (9)

enables the updating of the metric difference of (5) as

Δμ (x1:v−1, xv) =
1

N2
0

{l + m − y} − log (1 + z) . (10)

Here,

l = |xv|2 |yv|2 θH
v Ω (x1:v−1) θv

m = 2�
“
c (x1:v−1)

H Ω (x1:v−1) θvx∗vyv

”
y = c (x1:v)

H Ξ (x1:v) c (x1:v)

z =
|xv|2
N0

θH
v Ω (x1:v−1) θv .

3.2. Markovian assumption and the Viterbi algorithm based de-
coder

Since the domain of x1:v grows exponentially with v, complex-
ity of the above sequential algorithm is still exponential in N .
This growing complexity can be avoided by making a type of
Markovian assumption and considering that the metric to be max-
imised at each subcarrier depends only on the variables pertaining
to that and the previous subcarriers. In other words, at v > 1,
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the quantities Ω (x1:v−1), Ξ (x1:v), Ω (x1:v), c (x1:v−1), c (x1:v)
and Δμ (x1:v−1, xv) are substituted by Ω (xv−1), Ξ (xv−1, xv),
Ω (xv−1, xv), c (xv−1), c (xv−1, xv) and Δμ (xv−1, xv), respec-
tively. These assumptions enable a maximiser for the objective
function μ (x1:N), to be found using the well known Viterbi algo-
rithm.

In application, the decoding can be distributed among the win-
dows across the subcarriers, determined such that the pilot symbols
are always placed at the ends of a window. Assuming 1 and N1

are the first and second pilot carrying subcarriers, the decoding al-
gorithm is given below for the window of subcarriers indexed by
v ∈ {1, 2, ..., N1}. Other windows determined by the pilot symbol
placement can be similarly decoded.

For x1 ∈ Q (Initialisation)
c (x1) = ω∗piloty1θ1

Ω (x1) = R − |ωpilot|2
N0

Rθ1θH
1 R

1+
|ωpilot|2

N0
θH
1 Rθ1

μ (x1) =

j
μ0 � 1 , x1 = ωpilot

0 , otherwise
s (x1) = x1 .

End For
For v = 2, 3, ..., N1 (Recursion)

For xv ∈ Q
For xv−1 ∈ Q

Compute c (xv−1, xv), Ξ (xv−1, xv),Ω (xv−1, xv)
andΔμ (xv−1, xv) using (7), (8), (9), and (10).

μ (xv−1, xv) = μ (xv−1) + Δμ (xv−1, xv)
End For
x̂v−1 = arg max

xv−1∈Q
μ (xv−1, xv)

μ (xv) = μ (x̂v−1, xv)
Ω (xv) = Ω (x̂v−1, xv)
c (xv) = c (x̂v−1, xv)

s (xv) =
“
s (x̂v−1)

T xv

”T

End For
End For
Output s (xN1 = ωpilot) (Decisions)

4. A SOFT-OUTPUT SYMBOL DETECTION ALGORITHM

From the Markovian assumption of Section 3.2, we have:

μ (x1:N ) ≈ μ (x1) +

NX
v=2

Δμ (xv−1, xv).

Plugging this into the original joint probability distribution, and then
using Bayes formula,

p (x |y;xp, R, N0 ) ≈ q (x)

∝ exp {μ (x1)}
NY

v=2

{exp {Δμ (xv−1, xv)} p (xv)} .

Essentially, the actual posterior joint distribution has been approxi-
mated by a joint distribution q (x), in which we have q (xv |x1:v−1 ) =
q (xv |xv−1 ). Thus, there exists an underlying hidden Markov
model governing q (x). Therefore, one can use the BCJR (a.k.a.
MAP) algorithm [8], to output the marginal probability distributions

of the symbols; q (xv). These outputs can be taken as the approxi-
mate posterior marginals, p (xv |y;xp,R, N0 ), and hence the soft
outputs of the algorithm.

The pseudocode of the resulting soft-output algorithm (again for
the first window) is given below. The interemediate computations α,
β and γ have their usual meanings in the context of the BCJR algo-
rithm. Note also that we have used a max-log [9] type approximation
in the forward recursion, to adapt the recursive computations given
in Section 3.1.

For x1 ∈ Q (Forward initialisation)
c (x1) = ω∗piloty1θ1

Ω (x1) = R − |ωpilot|2
N0

Rθ1θH
1 R

1+
|ωpilot|2

N0
θH
1 Rθ1

α (x1) =

j
1 , x1 = ωpilot

0 , otherwise
End For
For v = 2, 3, ..., N1 (Forward recursion)

For xv ∈ Q
For xv−1 ∈ Q

Compute c (xv−1, xv), Ξ (xv−1, xv),
Ω (xv−1, xv) andΔμ (xv−1, xv)
using (7), (8), (9), and (10).

γ (xv−1, xv) = exp {Δμ (xv−1, xv)} p (xv)
α̃ (xv−1, xv) = α (xv−1) γ (xv−1, xv)

End For
α (xv) =

P
xv−1∈Q α̃ (xv−1, xv)

x̂v−1 = arg max
xv−1∈Q

α̃ (xv−1, xv)

Ω (xv) = Ω (x̂v−1, xv)
c (xv) = c (x̂v−1, xv)

End For
End For

β (xN1) =

j
1 , xN1 = ωpilot

0 , otherwise (Backward initialisation)

For v = N1 − 1, N1 − 2, ..., 1 (Backward recursion)
For xv ∈ Q

β (xv) =
P

xv+1∈Q β (xv+1) γ (xv, xv+1)

End For
Output the distribution:

q (xv+1) ∝Pxv∈Q α (xv) γ (xv, xv+1) β (xv+1)
End For

5. FURTHER DISCUSSION

Complexities of the above algorithms can be seen to beO`L2 |Q|2 N
´
.

Thus the overall algorithm complexity is linear inN , which is much
preferable to optimal algorithms for the hard or soft output gener-
ation, which have complexities that are exponential in N . While
this exponential complexity has been avoided in [3] by the use of
sphere decoders, complexities of such approaches are still of at least
O `N3

´
for reasonable decoding performance.

In the forward initialisation stages of the pseudocodes given ear-
lier, no information from previous windows are considered. This
enables parallel decoding across windows determined by the pilot
symbol placement. An alternative is to initialise each window based
on the final computations of the preceding window. In simulations,
such a linked decoding scheme is shown to perform better when the
number of pilot symbols is low, although such comparisons are not
shown here due to the lack of space.
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6. SIMULATION RESULTS

In the following simulations, an N = 128 subcarrier system is con-
sidered. The channel impulse responses are simulated to consti-
tute of L = 8 uncorrelated taps having zero mean and equal vari-
ances. The P (= |P|) pilot symbols were placed on the subcarrier
indices

n
1, 128

P
+ 1, ..., (P−1)128

P
+ 1
o
. The modulation alphabet

was QPSK. Performances of the proposed algorithms are compared
against a genie aided receiver, which without transmitting any pilot
symbols, is assumed to know the intermediate channels perfectly;
and a “conventional algorithm” [2]. In this conventional scheme,
the pilot symbols are first utilised to obtain least-squares channel
estimates on those subcarriers and then these estimates are interpo-
lated using a discrete Fourier transform based technique to obtain the
channel estimates on the data carrying subcarriers. Fig. 1 illustrates
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Fig. 1. Uncoded PER performance of the hard-output algorithm.
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Fig. 2. Coded PER performance of the soft-output algorithm.

the performance of the hard-output sequence detection algorithm in
a system without channel coding and Fig. 2 illustrates the perfor-
mance of the soft-output algorithm in a system with channel cod-
ing. The channel code in this case was a rate 1

2
convolutional code

with constraint length 7. The packet-error-rate (PER) performance
is plotted against the ratio of transmitted energy per data bit to the

noise variance at the receiver (Eb/N0), thus accounting for the loss
in efficiency due to the transmission of P pilot symbols. Each packet
contained a single OFDM frame of symbols.

The sequence detection algorithm performs close to the genie
aided receiver with the use of just a single pilot symbol and outper-
forms conventional approaches which use many more pilots. The
main attraction of the soft-output algorithm is that it enables the de-
coding of transmissions with the number of pilots P < L, where
conventional approaches fail to give meaningful decodings. While
the decoded PER for such instances is still worse than that of the
genie aided receiver, one solution to improve performance is to iter-
ate this soft-input soft-output algorithm with the channel decoding
algorithm or to utilise this decoding as the initial stage of an iterative
receiver, which iterates between channel estimation, data detection
and channel decoding (see, for example, [6]).

7. CONCLUSIONS

We considered the detection of OFDM symbols with interspersed
pilot symbols. Assuming channel distribution information at the
receiver, the problems of optimal sequence and symbol detections
were considered. Motivated by the approaches of Taricco et. al. for
flat fading channels, sub-optimal algorithms were developed. These
are seen to outperform conventional approaches to OFDM symbol
detection, especially when the number of pilot symbols is low; de-
spite their complexities being linear in the number of subcarriers.
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