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ABSTRACT

Cooperative relaying is an effective approach to combat wireless fad-
ing. However, the reliability enhancements depend strongly on the
accuracy of the carrier frequency offset (CFO) compensation and
channel estimation algorithms. In this paper, we show that CFO
compensation at relay is necessary in non-regenerative OFDM based
wireless relay networks with relays employing space-time coding. A
simple training scheme available for estimating space-time channel
is exploited to estimate the CFO at the relay. Maximum likelihood
(ML) and least squares (LS) based joint CFO and channel estima-
tors are constructed for estimating the CFO and the product channel
(effective channel from source to destination) at destination. For
non-regenerative OFDM based wireless relays, we prove that the LS
based estimator is equivalent to the ML based estimator. Theoretical
mean square error for the product channel estimator is also derived.

Index Terms— Carrier frequency offset, channel estimation,
wireless relays, amplify and forward, Alamouti coding

1. INTRODUCTION

Recently, there is an immense interest in wireless relay networks
employing distributed space-time coding [1]-[3]. The well known
benefits of orthogonal frequency division multiplexing (OFDM) in
combating inter symbol interference (ISI) and frequency selective
fading channels have led wireless relay networks to use OFDM for
data transmission [3]. The use of regenerative relays could drasti-
cally increase the system’s cost as the relay is required to perform
advanced signal processing operations for decoding the signal [1].
On the other hand, non-regenerative relays are not required to per-
form signal decoding and hence are cheaper and easier to implement.

In non-regenerative space-time coded relay networks, the relay
is required to perform time-reversion and complex conjugation op-
erations on the received signal [3]. Performing these operations di-
rectly on the received analog RF signal is infeasible and hence the
relay is required to down convert, sample and store the received sig-
nal. Therefore, the presence of carrier frequency offset (CFO) at
relay is unavoidable.

In this paper, we show that the relay needs to perform CFO com-
pensation so that the destination can reap the benefits from space-
time coding. The received signal at destination is again subjected to
CFO and frequency selective fading channel between the relay and
destination. Furthermore, the noise from relay is also transmitted
to the destination, causing the total noise at destination to be col-
ored. The destination needs to estimate the CFO and the product
channel, i.e., the effective channel from source to destination. In this
scenario, the well known result is to use maximum likelihood (ML)
based estimator for joint CFO and channel impulse response (CIR)
estimation [4]. However, in this paper, we show that the least squares

(LS) based estimator is indeed the ML estimator for joint CFO and
CIR estimation in OFDM based non-regenerative space-time coded
wireless relay networks.
Notation: All vectors are column vectors. Vectors (matrices) are
denoted by small (upper) case bold letters. Matrix IN represents
(N×N) Identity matrix and 0 can represent either a vector or matrix
with all elements equal to zero. The Kronecker product, linear con-
volution, statistical expectation, absolute value, conjugate, l2-norm,
transpose, and transpose conjugate operations are denoted by ⊗, �,
E(.), |.|, (.)∗, ‖.‖, (.)T and (.)H , respectively. Function � (.) de-
notes the phase of (.). Function diag(a) denotes a diagonal matrix
with elements of a as its diagonal elements. If A is a matrix, then
A(:, a : b) denotes a matrix containing ath column vector to bth
column vector of A.

2. SYSTEM MODEL

We consider a three node quasi-time synchronous wireless relay net-
work consisting of a source, relay and destination, each operating
in half-duplex mode. The source and destination are each equipped
with single antenna, whereas the relay is equipped with two anten-
nas. The data transmission from the source to destination (transmis-
sion cycle) takes place over two phases. In the first phase, signal is
transmitted only from the source to relay. The relay does not decode
the received signal, instead it performs simple time domain opera-
tions to generate a space-time signal, which is then transmitted to
destination. In the second phase, the source remains silent and the
relay transmits the space-time signal to the destination. OFDM is
used for data transmission and each antenna transmits two OFDM
symbols during each phase. Let L1 and L2 denote the maximum
number of channel taps for the source to relay and relay to destina-
tion channels, respectively and scalar P ≥ max{L1 − 1, L2 − 1}
denotes the number of cyclic prefix (CP) samples. In order to combat
ISI, the source (relay) augments CP to the signal before transmitting
it to relay (destination). The CIR vectors for source to ith relay an-
tenna and ith relay antenna to destination channels are denoted by
hS,i and hi,D , respectively for i = 1, 2.

2.1. Phase 1

In the first phase, relay receives the signal from source and discards
the samples corresponding to CP. Discarding the CP samples at relay
is necessary for constructing the space-time signal suitable for fre-
quency selective fading channel conditions. Vector rR,i,l contains N
ISI free samples received by the ith relay antenna during lth OFDM
symbol duration and it can be expressed as

rR,i,l = HS,iWH
N xl + vR,i,l (1)
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Table 1. Operations performed at Relay

Antenna OFDM Symbol si,l

l = 2n l = 2n + 1

i = 1 rR,1,2n/
√

2 rR,1,2n+1/
√

2

i = 2 ζ
(
r∗R,2,2n+1

)
/
√

2 −ζ
(
r∗R,2,2n

)
/
√

2

for i = 1, 2 and l = 2n, 2n + 1 where n denotes the transmis-
sion cycle index. In (1), WN is the (N × N) discrete Fourier
transform (DFT) matrix, HS,i is a (N × N) circulant matrix with
[hT

S,i,0]T as its first column vector, vector {xl}l=2n,2n+1 con-
tains N data symbols transmitted in lth OFDM symbol and vR,i,l

is the (N × 1) additive white Gaussian noise (AWGN) whose
covariance matrix is σ2

RIN . The relay performs only complex con-
jugation and sample reordering operations. For any vector a =
[a0, a1, · · · , aN−1]

T , we define ζ(a) = [aN−1, aN−2, · · · , a0]
T .

If matrix A = [a0, · · · , aN−1] then ζ(A) = [ζ(a0), · · · , ζ(aN−1)].
If elements of a are stored in a register then ζ(a) is obtained by just
reading the register in reverse order. Table 1 lists the space-time
signal vector si,l to be transmitted by the ith relay during the lth
OFDM symbol duration. The scaling factor 1/

√
2 is required to

equally allocate the signal power across the two relay antennas. The
relay augments CP of length P samples to the space-time signal and
then transmits it to the destination during the second phase.

Some of the key differences between the system model in our
paper and that in [3] are as follows: 1) source in [3] used DFT for
modulating data symbol x2n+1 whereas in our work only inverse
DFT (IDFT) is used for modulation and hence ensures compatibility
with existing systems, 2) the ζ(.) function used in [3] involved an
additional circular shift which adds additional burden to the relay, 3)
only frequency flat fading channel was considered in [3] whereas we
consider frequency selective fading channel, 4) unlike our system the
relay in [3] did not discard the CP as the channel was just a complex
scalar and 5) the nodes were assumed not to be time synchronized in
[3], whereas we assume that the nodes are quasi-time synchronized.

2.2. Phase 2

The received signal vector obtained after the removal of CP at desti-
nation for the lth OFDM symbol duration is given by

rD,l = H1,Ds1,l + H2,Ds2,l + vD,l (2)

for l = 2n, 2n+1. In (2), Hi,D is a circulant matrix with [hT
i,D,0]T

as its first column vector for i = 1, 2 and vD,l is the (N ×1) AWGN
vector whose covariance matrix is given by σ2

DIN . Let yD,n be a
(2N × 1) vector given by

yD,n =[(WN rD,2n)T (WN rD,2n+1)
H ]T

=Hp

[
xT
2n, xH

2n+1

]T

+ fn
(3)

where vector fn contains the effective noise from relay which is cir-
cularly convolved with relay to destination channels and the AWGN
at the destination. The (2N × 2N) block diagonal channel matrix
HP is given by

Hp =
1√
2

[
Λ1,DΛS,1 A

−A∗ Λ∗
1,DΛ∗

S,1

]
(4)

where ΛS,i = WN HS,iWH
N and Λi,D = WN Hi,DWH

N for i = 1, 2
and A = ZN

(
2π
N

)
Λ2,DΛ∗

S,2 with

ZN (φ) = diag

([
1, ejφ, ej2φ, · · · , ej(N−1)φ

]T
)

. (5)

Note that Hp has the Alamouti coded form, i.e.,

HH
p Hp =

(|Λ1,D|2|ΛS,1|2 + |Λ2,D|2|ΛS,2|2
)

I2N/2. (6)

Therefore, the decision statistics for x2n and x2n+1 can be obtained
through simple Alamouti decoding. Furthermore, the matrix Hp can
be easily estimated by using the following training symbols [5]:

x2n = p and x2n+1 = −p (7)

where p is a (N × 1) vector such that QQ∗ = IN with

Q = diag(p). (8)

3. PRESENCE OF CFO

Let fS , fR and fD be the frequencies of the oscillators at the source,
relay and destination, respectively. The normalized CFOs experi-
enced at the relay and destination are given by εr = (fS − fR)T
and εd = (fR − fD)T , respectively, where T is the OFDM sym-
bol duration. The angular CFO (ACFO) experienced at the relay and
destination are given by φr = 2πεr/N and φd = 2πεd/N , respec-
tively. In the presence of ACFO, the received signal vector rR,i,l in
the first phase is given by

rR,i,l = αlZN (φr)HS,iWH
N xl + vR,i,l (9)

for i = 1, 2 and l = 2n, 2n + 1 where αl = ej(l(N+P )+P )φr .
If the relay generates the space-time signal si,l for i = 1, 2 and
l = 2n, 2n + 1 without compensating for the ACFO φr , then the
received signal vectors at the destination are given as follows: (the
noise terms are omitted for the sake of clarity)

rD,2n =
ZN (φd)√

2

[
b2nH1,DZN (φr)HS,1WH

N x2n

+ cnH2,DZN (φr)ζ
(
H∗

S,2

)
(WH

N x2n+1)
∗
] (10)

rD,2n+1 =
ZN (φd)√

2

[
b2n+1H1,DZN (φr)HS,1WH

N x2n+1

− dnH2,DZN (φr)ζ
(
H∗

S,2

)
(WH

N x2n)∗
] (11)

where cn = ej[(2n(N+P )+P )(φd−φr)−(2N+P−1)φr ],
dn = ej[{(2n+1)(N+P )+P}(φd−φr)+(P+1)φr ] and
bl = ej(l(N+P )+P )(φr+φd) for l = 2n, 2n + 1. The presence of
ACFO destroys the Alamouti code structure in the resultant chan-
nel matrix Hp. Furthermore, (10) and (11) imply that the resultant
channel matrix varies with index n and hence must be estimated for
every transmission cycle. This could render the implementation of
the wireless relay system infeasible. Matrix ZN (φr) cannot be fac-
tored out and lumped together with ZN (φd) in (10) and (11) and
hence simultaneously compensating for φr and φd at the destination
is not possible. Therefore, the relay is required to compensate for φr

before constructing the space-time signals.

3.1. ACFO Estimation at Relay

Using the pilot symbols given in (7), the ML estimate for φr is given
by [6]

φ̂r = �

(
−

2∑
i=1

rH
R,i,2nrR,i,2n+1

)
/(N + P ). (12)

The above estimator is computationally simple and can be easily im-

plemented in relay at minimal cost. The estimate φ̂r is used by the
relay to adjust its carrier frequency such that the resultant CFO at
relay is negligible.
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4. RELAY SYNCHRONIZED WITH SOURCE

The received signal vectors at the destination, in the absence of φr

but in the presence of φd, are given by

rD,2n =γ2nZN (φd)
[
H1,DHS,1WH

N x2n

+H2,D ζ
(
H∗

S,2

)
(WH

N x2n+1)
∗
]
/
√

2 + kD,2n

rD,2n+1 =γ2n+1ZN (φd)
[
−H2,D ζ

(
H∗

S,2

)
(WH

N x2n)∗

+H1,DHS,1WH
N x2n+1

]
/
√

2 + kD,2n+1

(13)

where γl = ej(l(N+P )+P )φd for l = 2n, 2n + 1 and the (N × 1)
noise vectors are given by

kD,2n =γ2nZN (φd) [H1,DvR,1,2n

+H2,D ζ
(
v∗

R,2,2n+1

)]
/
√

2 + vD,2n

kD,2n+1 =γ2n+1ZN (φd) [H1,DvR,1,2n+1

−H2,D ζ
(
v∗

R,2,2n

)]
/
√

2 + vD,2n+1.

(14)

The covariance matrix for the noise vectors {kD,l}l=2n,2n+1 is
given by

R = ZN (φd)R0ZH
N (φd) (15)

where R0 is a (N × N) circulant matrix expressed as follows:

R0 = σ2
DIN + σ2

R

(
H1,DHH

1,D + H2,DHH
2,D

)
/2. (16)

This circulant structure is available in non-regenerative wireless re-
lay networks as the noise from the relay is circularly convolved with
the relay to destination channels.

5. JOINT ACFO AND CIR ESTIMATION

The received signal vectors at the destination corresponding to the
pilot symbols given in (7) are stacked to form a (2N × 1) vector
q = [rT

D,2n, rT
D,2n+1]

T which can be expressed as

q = Gφd DpUphp + k̃ (17)

where

Gφd =

[
γ2nZN (φd) 0

0 γ2n+1ZN (φd)

]
(18)

and noise vector k̃ = [kT
D,2n, kT

D,2n+1]
T whose covariance matrix

is given by R̃ = I2 ⊗R. Let L be defined as L = L1 + L2 − 1. The
(2L × 1) product channel vector hp is given by

hp =
[
(h1,D � hS,1)

T , (h2,D � ζ(h∗
S,2))

T
]T

. (19)

The (2N × 2N) unitary matrix Dp is defined as follows:

Dp =
1√
2

[
WH

N 0
0 WH

N

] [
Q −Q∗

−Q −Q∗

]
. (20)

The (2N × 2L) matrix Up is given by

Up =
√

N

[
Ua 0
0 Ub

]
(21)

where

Ua =WN (:, 1 : L)

Ub =[WN (:, N − L1 + 1 : N), WN (:, 1 : L2 − 1)].
(22)

Let matrix X be defined as X = DpUp. Note that the matrix X has
full column rank of 2L and XHX = NI2L. The ML and LS based
estimates for hp are [4]

hML
p =

(
SH

φ Sφ

)−1

SH
φ R̃

−1
2 q

hLS
p =

(
XHGH

φ q
)

/N
(23)

where Sφ = R̃−1/2GφX and the diagonal matrix Gφ is obtained by
replacing φd by variable φ in Gφd . Substituting the estimates for hp

into the respective ML and LS cost functions, the ML and LS based
estimates for φd are obtained as follows:

φML
d =arg min

φ∈[−π,π)

∥∥∥∥(I2N − Sφ(SH
φ Sφ)−1SH

φ )R̃
−1
2 q

∥∥∥∥
2

φLS
d =arg min

φ∈[−π,π)

∥∥∥(
I2N − (XXH)/N

)
GH

φ q
∥∥∥2

.

(24)

A grid search is employed to obtain the estimate for φd using (24).
The ML based ACFO estimator requires inversion of (2L × 2L)
matrix SH

φ Sφ for every search point, whereas no matrix inversion is
involved in LS based ACFO estimator. Note that

ML : R̃−1/2q = R̃−1/2Gφd Xhp + R̃−1/2k̃

LS : GH
φd

q = Xhp + GH
φd

k̃.
(25)

The signal subspace for the ML and LS based ACFO estimators are

given by the column space of matrices X and R̃−1/2Gφd X, respec-
tively. Both the estimators exploit the orthogonality between the sig-

nal and noise subspaces. The noise whitening matrix R̃−1/2
is full

rank and does not change the signal subspace dimension nor the sig-
nal to noise ratio (SNR) [4]. As a result, the above ACFO estimators
will have the same performance but the LS based ACFO estimator
has reduced computational complexity. Once φd is estimated, the
corresponding product channel vector hp can be estimated by sub-
stituting φ = φt

d in (23) for t = {ML, LS}.

5.1. Equivalence between LS and ML based CIR Estimators

In [7], the ML estimate of covariance matrix was shown to be equiv-
alent to the estimate obtained using periodogram provided that the
covariance matrix is circulant. In our system model, the covariance
matrix of the total noise at destination is circulant in the absence of
φd. In the following, we show that the ML based CIR estimator is
indeed the LS based CIR estimator.

Assuming that φd has been perfectly estimated, one can perform
the following unitary transformation to q in (19) as follows:

q̃ = BDH
P GH

φd
q =

√
Nap + BDH

P GH
φd

k̃ (26)

where

B =

[
WH

N 0

0 [Ub, WN (:, L2 : N − L1)]
H

]
(27)

and BHB = I2N . The (2N × 1) vector ap is obtained to be

ap =
[
(h1,D � hS,1)

T ,0, (h2,D � ζ(h∗
S,2))

T ,0
]T

. (28)

Let ˜̃q be a (2L × 1) vector defined as

˜̃q = Vq̃ =
√

Nhp + VBDH
p GH

φd
k̃, (29)
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where V is a (2L × 2N) matrix given by

V =

[
IL 0 0 0
0 0 IL 0

]
. (30)

Note that the ML estimate for hp obtained from (17) and (26) are
the same. Furthermore, the ML estimate for hp obtained from (30)
and (26) are the same since the elements of q̃ where elements of ap

are zeros carry no information about hp. The ML estimate for hp

obtained from (29) is given by

hML
p = VBDH

p GH
φd

q/
√

N. (31)

As VB = UH
p /

√
N , it can be concluded from observing (23) and

(31) that
hML

p = hLS
p . (32)

The mean square error (MSE) for the estimated hp obtained using
(31) is

E[‖hp − hML
p ‖2 = tr

(
VBDH

p (I2 ⊗ R0) DpBHVT
)

/N (33)

Exploiting the circulant structure of R0, we have

E[‖hp − hML
p ‖2 = tr

(
V (I2 ⊗ R0) VT

)
/N = 2L R0(1, 1)/N

= 2L
(
σ2

D + σ2
R(hH

1,Dh1,D + hH
2,Dh2,D)/2

)
/N.

(34)

6. SIMULATION RESULTS

In this section, we illustrate the MSE performance of ML and
LS based joint ACFO and CIR estimators and compare it with
the Cramer-Rao lower bound (CRLB). The number of subcarriers
N = 64, length of CP P = 16 and the number of taps in CIR is
L1 = L2 = 10. The normalized CFOs εr and εd are assumed to be
a uniformly distributed over the interval [−0.35, 0.35]. Estimator in
(13) is used to compensate for φr at relay. The ML and LS based
estimators given in (23) and (24) are used to obtain the simulation
results. The estimates are obtained using only the received signal
over 2 OFDM symbol durations. The grid size for grid search used
to estimate the ACFO is 0.0001. The SNR is defined as the ratio
of desired signal power to the total noise power at destination. The
MSE for εd and hp are computed as E

[
((φd − φt

d)N/(2π))2
]

and

E
[
(‖hp − ht

p‖2/hH
p hp)

]
, respectively, where t = {ML, LS}. The

CRLB for MSE corresponding to ACFO and CIR estimates are
obtained following the steps in [4]. Observing Figs. 1 and 2, it is
found that MSE performance of ML and LS based estimators over-
lap and achieve the CRLB. This confirms our theoretical findings.
Furthermore, it can be seen that the theoretical MSE obtained in (34)
overlaps with the CRLB and the estimators’ MSE performance.

7. CONCLUSION

In this paper, we have shown that the relay must perform CFO com-
pensation in non-regenerative wireless relay networks with relays
employing space-time coding. The covariance matrix of the total
noise at destination is shown to be circulant in the absence of CFO
at destination. Furthermore, the ML and LS based estimators for
ACFO and CIR estimation are shown to be identical. Thus, the sim-
ple LS based estimator can be used to obtain the ML estimates for
ACFO and CIR. The theoretical MSE obtained for the product chan-
nel estimate was verified through computer simulations. Lastly, this

−5 0 5 10 15 20 25
10−6

10−5

10−4

10−3

10−2

SNR (dB)

M
S

E
 fo

r C
FO

 E
st

im
at

or

LS
ML
CRLB

Fig. 1. MSE Performance for CFO Estimator.

−5 0 5 10 15 20 25
10−3

10−2

10−1

100

SNR (dB)

M
S

E
 fo

r C
IR

 E
st

im
at

or

LS
ML
CRLB
Theoretical MSE

Fig. 2. MSE Performance for CIR Estimator.

work provides some insight into the design of joint CFO and chan-
nel estimation algorithms when the relays are spatially distributed
and have their carrier frequencies synchronized with the source.
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