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ABSTRACT

We present a factor graph based design of a receiver for pilot-
assisted OFDM-IDMA systems transmitting over frequency-selec-
tive channels. The receiver performs joint iterative multiuser data
detection and channel estimation with a complexity that is linear in
the number of users, and it includes estimation of the channel length.
Simulation results demonstrate large performance gains compared to
OFDM-IDMA receivers using separate MMSE channel estimation.

Index Terms—OFDM-IDMA, multiuser detection, channel esti-
mation, iterative receiver, factor graph, sum-product algorithm

1. INTRODUCTION

Multiuser systems employing interleave-division multiple access
(IDMA) achieve user separation by means of user-specific interleav-
ers combined with low-rate channel coding [1]. OFDM-IDMA was
introduced in [2,3] as an extension for frequency-selective channels.
In [4], we proposed a factor graph based design of an IDMA re-
ceiver performing joint data detection and pilot-assisted channel es-
timation. Here, we present a similar design for OFDM-IDMA sys-
tems transmitting over frequency-selective channels. While our de-
velopment is largely analogous to [4], the frequency-selective chan-
nel model and OFDM modulation scheme result in different mes-
sages in parts of the factor graph. We also propose an explicit es-
timation of the length of the channel impulse response, thereby re-
ducing the number of channel coefficients to be estimated. The en-
tire receiver—performing joint multiuser data detection, channel es-
timation, and channel length selection—is derived by applying the
sum-product algorithm [5] to the Forney-style factor graph [6] of the
OFDM-IDMA system (cf. [7, 8]). A complexity that is linear in the
number of users is achieved by Gaussian message approximations.
This paper is organized as follows. The OFDM-IDMA system is
described in Section 2. The factor graph and messages are developed
in Sections 3 and 4, respectively. Section 5 discusses channel length
estimation. Simulation results are provided in Section 6.

2. PILOT-ASSISTED OFDM-IDMA SYSTEM

We consider a synchronous uplink scenario where U users transmit
data to a base station via OFDM-IDMA transmitters (see Fig.1). The
bits of the u th user, bu � (bu

1 · · · bu
K)T, are converted into a length-

M BPSK symbol vector xu= Cu(bu) by means of a terminated con-
volutional code serially concatenated with a low-rate repetition code,
a user-specific interleaver πu(·), and a symbol mapper. Each of the
M BPSK data symbols is transmitted on a corresponding OFDM
subcarrier; we thus write the data symbols as xu

n, where n denotes
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Fig. 1. OFDM-IDMA transmitter for the u th user.

the subcarrier index. The transmitter uses a total ofN = M + UNp

subcarriers, consisting ofM data subcarriers (allocated jointly to all
users) and UNp pilot subcarriers. The u th user transmits Np pilot
symbols pu

n on Np user-specific pilot subcarriers spaced Δ subcar-
riers apart. Let Pu denote the corresponding set of pilot subcarri-
ers and P the union of all the (disjoint) sets Pu. The subcarriers
n = 1, . . . , N are partitioned into Np blocks of Δ subcarriers con-
sisting of U pilot subcarriers (one for each user) andΔ−U data sub-
carriers. Thus,Np (Δ−U) = M and thereforeNp = |Pu| = M

Δ−U
.

Finally, the time-domain transmit signal of each user is obtained by
applying an inverse discrete Fourier transform (IDFT) to the user’s
data and pilot symbols and inserting a cyclic prefix.
The channel of the u th user is frequency-selective with time-do-
main impulse response denoted by the length-N vector h̃u � (h̃u

1 · · ·

h̃u
Lc

0 · · · 0)T. The Lc nonzero channel taps are assumed uncorre-
lated and zero-mean complex Gaussian, i.e., h̃u ∼ CN (0,Ch̃p

),
where Ch̃p

(subscript p stands for “prior”) is a diagonal N × N
matrix in which only the first Lc diagonal elements are nonzero.
The frequency-domain channel coefficient vector is given by hu �

(hu
1 · · ·hu

N )T = Fh̃u, where F is the unitary N×N DFT matrix.
At the receiver, the cyclic prefix is removed, and a DFT yields the
frequency-domain receive vector r of lengthN . This vector consists
ofM entries involving the data symbols xu

n of all users,

rn =
U∑

u=1

hu
n xu

n + wn , n /∈P, (1)

and UNp entries (denoted r̃u
n) corresponding to the pilot symbols,

r̃u
n = hu

n pu
n + wn , n∈Pu, u = 1, . . . , U . (2)

Here, wn denotes white Gaussian noise of variance σ2
w.

3. FACTOR GRAPH AND RECEIVER STRUCTURE

The proposed receiver is based on the bitwise MAP detector [7]

b̂u
i = arg max

bu
i
∈{0,1}

p(bu
i |r) , (3)

where p(bu
i |r) is the posterior probability mass function of bit b

u
i .

Factor graph. The marginalization involved in (3) can be done
efficiently by applying the sum-product algorithm to the factor graph
of the OFDM-IDMA system [5, 7, 8]. Let b denote the vector of all
bu
i . For equally likely bu

i , we obtain from Bayes’ rule
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Fig. 2. Forney-style factor graph describing f(X,H, r|b) in (6) for
the first symbol and one pilot symbol of the first user.

p(bu
i |r) =

∑
∼bu

i

p(b|r) ∝
∑
∼bu

i

f(r|b) , (4)

where f(r|b) is the conditional probability density function (pdf) of
r given b,

∑
∼x denotes summation over all unknown variables in

the summand except x, and ∝ denotes equality up to factors irrel-
evant to the maximization (3). Based on the one-to-one correspon-
dence between b andX � (x1 · · · xU ), we can factor f(r|b) as

f(r|b) =
∑
X

f(r|X)

U∏
u=1

I
(
xu = Cu(bu)

)
,

where the indicator function I(·) is one if its argument is true and
zero otherwise. We have f(r|X) =

∫
f(r|X,H) f(H) dH, where

H is the U×N matrix of all hu
n. Using (1), (2) and the definitions

xn � (x1
n · · · xU

n )T and hn � (h1
n · · · hU

n )T yields

f(r|X,H) =
∏
n/∈P

f(rn|xn,hn)

U∏
u=1

∏
n∈Pu

f(r̃u
n|h

u
n) .

Furthermore, using the independence of all channels and hu = Fh̃u,
we have f(H) =

∏U
u=1

∫
δ(h̃u−FHhu)f(h̃u)dh̃u. Combining

these expressions and inserting them into (4), we obtain

p(bu
i |r) ∝

∑
∼bu

i

∫
f(X,H, r|b) dH (5)

with

f(X,H, r|b) =
∏
n/∈P

f(rn|xn,hn)
U∏

u=1

∏
n∈Pu

f(r̃u
n|h

u
n)

×
U∏

u′=1

∫
δ(h̃u′

−FHhu′

)f(h̃u′

)dh̃u′

×
U∏

u′′=1

I
(
xu′′

= Cu′′

(bu′′

)
)
. (6)

Due to (1) and (2), f(rn|xn,hn) and f(r̃u
n|h

u
n) are Gaussian with

mean hT
nxn and hu

n pu
n, respectively and variance σ2

w. Fig. 2 depicts
the Forney-style factor graph [6] corresponding to f(X,H, r|b) in

OFDM
receiver

soft

multiuser

detectorr

channel

channel

estimation

estimation

(π1)−1

(πU )−1 soft channel

soft channel

decoder

decoder

π1

πU

ξ̃1
n

ξ̃U
n

ξ1
n

ξU
n

Fig. 3. Structure of the OFDM-IDMA receiver performing joint de-
tection and channel estimation. (ξu

n and ξ̃u
n are defined in Section 4.)

(6). For simplicity, only the first symbol and one pilot symbol are
shown.

Receiver structure. Applying the sum-product algorithm [5] to the
factor graph in Fig. 2 yields an approximation to the marginal (5)
for all bu

i simultaneously. (This is only an approximation because
the graph contains cycles.) Using parallel scheduling [8], we ob-
tain the receiver structure shown in Fig. 3. The block termed “soft
multiuser detector” (corresponding to the upper dotted box in Fig. 2)
receives soft information from the channel decoders of the individ-
ual users [1] and updates it using the current channel estimate. The
improved soft bits are sent back to the decoders and also passed to
channel estimation units (corresponding to the lower dotted box in
Fig. 2), which calculate refined estimates of the channel coefficients.
The decoding units—each consisting of deinterleaver, soft channel
decoder, and interleaver—correspond to the blocks I(xu= Cu(bu))
in Fig. 2. Upon termination of the sum-product algorithm, bit deci-
sions are provided by the signs of the a posteriori soft information
bits computed by the channel decoder.

4. MESSAGES

We now derive the messages that are propagated through the factor
graph in Fig. 2.

Messages μC→f (xu
n). Applying the sum-product algorithm to the

code function nodes I(xu = Cu(bu)) yields the BCJR algorithm
[5, 9] for soft-decoding the convolutional code and a summation of
appropriate bit log-likelihood ratios (LLRs) for soft-decoding the
repetition code. This soft decoder produces extrinsic LLRs ξu

n ∈ R

for the BPSK symbols xu
n. The corresponding messages are [5]

μC→f (xu
n) =

exp
(
ξu

n (xu
n +1)/2

)
1 + exp(ξu

n)
, xu

n ∈ {−1, 1} .

Messages μf→C(xu
n). The channel function nodes pass the fol-

lowing messages back to the code function nodes:

μf→C(x
u
n) =

∑
∼xu

n

∫
f(rn|xn,hn)

U∏
u′=1

μh→f (hu′

n )

×
∏

u′′ �=u

μC→f (xu′′

n ) dhn . (7)

The sum
∑
∼xu

n
is over 2U−1 terms. To achieve a complexity that is

linear in U , we approximate the μC→f (xu
n) by Gaussian messages,

μC→f (xu
n) = exp

(
−

(xu
n− au

n)2

2bu
n

)
, (8)
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with mean au
n = tanh(ξu

n) and variance bu
n = 1− (au

n)2 (cf. [1]). A
Gaussian model is also used for the messages μh→f (hu

n), i.e.,

μh→f (hu
n) = exp

(
−

|hu
n− αu

n|
2

βu
n

)
, (9)

where the mean αu
n and variance βu

n will be determined later.
Assuming that xu

n and hu
n are independent and distributed accord-

ing to (8) and (9), respectively, the message μf→C(x
u
n) in (7) equals

the conditional pdf f(rn|x
u
n). Since closed-form integration in (7)

is impossible, we use the Gaussian approximation

μf→C(x
u
n) = fG(rn|x

u
n) ∝ exp

(
−

|rn− cu
n|

2

du
n

)
, (10)

with mean cu
n = E{rn|x

u
n} = αu

nxu
n +

∑
u′ �=uαu′

n au′

n and variance

du
n = E{|rn−cu

n|
2|xu

n} = |αu
n|

2 + σ2
w +

∑
u′ �=u

(
βu′

n + |αu′

n |
2 bu′

n

)
.

In the course of the iterations, bu
n → 0 and βu

n → 0, i.e., μC→f (xu
n)

in (8) and μh→f (hu
n) in (9) that enter as factors in (7) become in-

creasingly narrow, and thus the Gaussian approximation becomes
more accurate. Converting μf→C(x

u
n) into an LLR value yields

ξ̃u
n = log

μf→C(x
u
n =1)

μf→C(xu
n =−1)

=

(
rn −

∑
u′ �=uαu′

nau′

n

)
(αu

n)∗

2du
n

,

which is passed to the associated channel decoder (see Fig. 3).

Messages μf→h(hu
n). The messages from the channel function

nodes to the channel variable nodes are

μf→h(hu
n) =

∑
xn

∫
f(rn|xn,hn)

U∏
u′=1

μC→f (xu′

n )

×
∏

u′′ �=u

μh→f (hu′′

n ) dh∼u
n ,

where
∫

dh∼u
n denotes integration with respect to all entries of hn

except hu
n. Based on arguments similar to those motivating (10), we

use the approximation

μf→h(hu
n) = exp

(
−

|hu
n− νu

n |
2

γu
n

)
, (11)

with νu
n = 1

au
n

(
rn−

∑
u′ �=uαu′

n au′

n

)
and γu

n = 1
|au

n|
2

[
σ2

w+ bu
n |h

u
n|

2

+
∑

u′ �=u

(
βu′

n + |αu′

n |
2 bu′

n

)]
. Because hu

n appears in γu
n , μf→h(hu

n)

in (11) is not Gaussian in hu
n. We thus use the approximation γu

n ≈
1

|au
n|

2

[
σ2

w +
∑

u′ �=u

(
βu′

n + |αu′

n |
2 bu′

n

)]
, which is justified because

bu
n → 0 in the course of the iterations.

Messages μr̃→h(hu
n). The messages from the pilot symbol func-

tion nodes are given by μr̃→h(hu
n) = exp

(
−|r̃u

n − hu
npu

n|
2/σ2

w

)
.

These messages can be rewritten as Gaussians in hu
n:

μr̃→h(hu
n) = exp

(
−

|hu
n − r̃u

n/pu
n|

2

σ2
w/(pu

n)2

)
.

Messages μh̃(h̃u). Let us combine the (Gaussian) messages
μr̃→h(hu

n) and μf→h(hu
n) into a “vector message” μh(hu), which

is Gaussian with meanmu
h and diagonal covariance C

u
h. In the first

several iterations, we use only the pilot symbols for channel estima-
tion. We thus have μh(hu)=

∏
n∈Pu μr̃→h(hu

n), from which it fol-
lows that [mu

h]n is r̃
u
n/pu

n if n∈Pu and zero otherwise, and [Cu
h]n,n

is σ2
w/(pu

n)2 if n∈Pu and zero otherwise. In later iterations, we also
use the messages μf→h(hu

n) for channel estimation, so μh(hu) =∏
n∈Pu μr̃→h(hu

n)
∏

n/∈P μf→h(hu
n). Thus, [mu

h]n is r̃
u
n/pu

n if n∈

Pu, αu
n if n /∈ P , and zero otherwise, and [Cu

h]n,n is σ2
w/(pu

n)2 if

n ∈ Pu, βu
n if n /∈ P , and zero otherwise. Finally, because h̃u =

FHhu, the desired message μh̃(h̃u) is Gaussian with mean mu
h̃

=

FHmu
h and covarianceC

u
h̃

= FHCu
hF.

Messages μ
up
h̃

(h̃u). The message μh̃(h̃u) is multiplied by the a
priori message μf

h̃
(h̃u) (corresponding to f(h̃u)), which is Gaus-

sian with mean mh̃p
and covariance Ch̃p

. The product μup
h̃

(h̃u) is

again Gaussian [5], with mean mu,up

h̃
and covariance Cu,up

h̃
. Sup-

pose that the receiver uses a fixed channel length L̃c (in Section 5, we
propose a method for estimating the channel length). Then, only the
first L̃c entries ofm

u,up

h̃
(denoted by nu,up

h̃
) and the top-left L̃c×L̃c

submatrix of Cu,up

h̃
(denoted Du,up

h̃
) are nonzero. Let nu

h̃
and nh̃p

denote the first L̃c entries ofmu
h̃
andmh̃p

, respectively, and letDu
h̃

and Dh̃p
denote the top-left L̃c × L̃c submatrix of Cu

h̃
and Ch̃p

,
respectively. Then Du,up

h̃
=

(
(Du

h̃
)−1 + D−1

h̃p

)−1
and nu,up

h̃
=

Du,up

h̃

(
(Du

h̃
)−1nu

h̃
+ D−1

h̃p
nh̃p

)
[5].

Messagesμh→f (hu). Becausehu=Fh̃u, the message μh→f (hu)

(the “vector message” combining the messages μh→f (h̃u
n)) is Gaus-

sian with meanmu,up
h =Fmu,up

h̃
and covarianceCu,up

h =FCu,up

h̃
FH.

The mean αu
n and variance βu

n in (9) equal the nth element ofmu,up
h

and the nth diagonal element ofCu,up
h , respectively.

Scheduling. The messages μf→C(x
u
n) for all users at the input of

the multiuser detector are simultaneously updated by the channel
decoders and used by the multiuser detector to calculate the mes-
sages for all users at its output (parallel message scheduling [8]). We
propose not to update the messages μh→f (hu

n) (using the messages
μf→h(hu

n)) during the first three iterations. Initially, a maximum
value of L̃c is used; an estimate of Lc is calculated (see Section 5)
in the fifth iteration and then used for L̃c in all subsequent iterations.

5. CHANNEL LENGTH ESTIMATION

Estimating the channel length Lc can improve receiver performance,
because fewer channel coefficients have to be estimated. We con-
sider the maximum likelihood estimator

L̂c = arg max
Lc∈N

f(r|Lc) , (12)

where f(r|Lc) can be obtained by the following marginalization:

f(r|Lc) ∝
∑
X,b

∫
f(X,H, r|b, Lc) dH . (13)

We have f(X,H, r|b, Lc) = f(r|X,H,b, Lc)f(X,H|b, Lc) =
f(r|X,H) f(X|b) f(H|Lc), with

f(H|Lc) =
U∏

u=1

∫
δ(h̃u−FHhu)f(h̃u|Lc)dh̃

u.

The marginalization (13) equals (5), except that the summation is
over all entries of b. Using the sum-product algorithm, we pass mes-
sages analogous to those used for approximating (5), except that now
they depend on Lc. For a given Lc, the messages μh̃(h̃u) are mul-
tiplied by the a priori messages μf

h̃
(h̃u|Lc) (formerly μf

h̃
(h̃u)),

yielding μup
h̃

(h̃u|Lc). From these, the messages μh→f (hu
n|Lc) are

obtained as in Section 4, and (13) can be expressed as

f(r|Lc) ∝
∏
n/∈P

∫
f(rn|xn,hn)

U∏
u=1

μC→f (xu
n)

× μh→f (hu
n|Lc) dxu

n dhu
n .
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Fig. 4. Average BER versus Eb/N0 obtained with different OFDM-
IDMA receivers for U =4 users and channel length Lc =20.

Using the approximation μh→f (hu
n|Lc) = δ(hu

n−αu
n(Lc)) (cf. (9)),

the hu
n integral collapses. This yields

f(r|Lc) ∝
∏
n/∈P

∫
f
(
rn|xn,hn = αn(Lc)

) U∏
u=1

μC→f (xu
n) dxu

n ,

with αn(Lc) �
(
α1

n(Lc) · · ·α
U
n (Lc)

)T
. The μC→f (xu

n) are Gaus-
sian (see (8)), so the integration can be carried out and we obtain

f(r|Lc) ∝ −
∑
n/∈P

∣∣∣∣rn −
U∑

u=1

au
n αu

n(Lc)

∣∣∣∣
2

.

The maximization (12) is then done by exhaustive search.

6. SIMULATION RESULTS

We consider an OFDM-IDMA system with U =4 users, each trans-
mitting K = 256 information bits. An overall code rate of 1/8 is
achieved by serially concatenating a terminated rate-1/2 convolu-
tional code (code polynomial [2 3]8) and a rate-1/4 repetition code
(hence, the sum-rate is 1/2). N = 2360 subcarriers are used, with
a pilot spacing of Δ = 30. The a priori variances of the nonzero
channel coefficients were set equal to 1.
For a channel of length Lc = 20, Fig. 4 shows the average bit er-
ror rate (BER) versus the signal-to-noise ratio (SNR) Eb/N0 for the
following receivers: (i) a conventional receiver that performs pilot-
based MMSE channel estimation assuming L̃c = 60 and uses the
resulting channel estimates for iterative data detection; (ii) the same
receiver but assuming the correct channel length, i.e., L̃c =Lc =20;
(iii) the proposed receiver without channel length estimation, assum-
ing L̃c =60; (iv) the proposed receiver with channel length estima-
tion; (v) the proposed receiver without channel length estimation but
assuming L̃c = Lc = 20; and (vi) an iterative receiver with perfect
channel state information (CSI). All receivers performed 10 itera-
tions. The conventional receiver with L̃c = 60 is seen to perform
about 3dB worse than the conventional receiver assuming the correct
Lc. At a BER of 10−6, the proposed receiver using channel length
estimation and the proposed receiver using the true Lc perform al-
most as well as the receiver with perfect CSI, while the proposed
receiver using L̃c = 60 performs about 1dB worse. These results
demonstrate the advantages of joint data detection and channel esti-
mation, as well as of channel length estimation, in the OFDM-IDMA
context considered.
To illustrate the performance of the proposed channel length esti-
mation method, Fig. 5 shows histograms of L̂c for two channels with
Lc =20 and Lc =40, at Eb/N0 =11dB. It is seen that the estimates
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Fig. 5. Histogram of the estimated channel length L̂c for channel
lengths Lc =20 and Lc =40, at Eb/N0 = 11dB.

are correct in the majority of cases. There is a tendency for overes-
timation, but estimation errors larger than 2 are quite unlikely. We
note that overestimation of Lc causes a much smaller BER increase
than underestimation.

7. CONCLUSION

Using a factor graph approach, we developed an iterative OFDM-
IDMA receiver whose complexity scales linearly with the number of
users. Performance improvements relative to conventional receivers
were achieved by joint multiuser data detection and channel esti-
mation and by explicit estimation of the length of the frequency-
selective channels. Extensions to MIMO-OFDM-IDMA systems
with spatial multiplexing (cf. [10]) and to time-varying channels, as
well as possible combination with reduced-rank approximations [11]
are interesting directions for future research.

8. REFERENCES

[1] L. Ping, L. Liu, K. Wu, andW. K. Leung, “Interleave-division multiple-
access,” IEEE Trans. Wireless Comm., vol. 5, pp. 938–947, Apr. 2006.

[2] I. Mahafeno, C. Langlais, and C. Jego, “OFDM-IDMA versus IDMA
with ISI cancellation for quasi-static Rayleigh fading multipath chan-
nels,” in Proc. 4th Int. Symp. on Turbo Codes & Related Topics, (Mu-
nich, Germany), pp. 3–7, 2006.

[3] L. Ping, Q. Guo, and J. Tong, “The OFDM-IDMA approach to wireless
communication systems,” IEEE Wireless Comm., vol. 14, pp. 18–24,
June 2007.

[4] C. Novak, G. Matz, and F. Hlawatsch, “A factor graph approach to
joint iterative data detection and channel estimation in pilot-assisted
IDMA transmissions,” in Proc. IEEE ICASSP-2008, (Las Vegas, NV),
pp. 2697–2700, Apr. 2008.

[5] H.-A. Loeliger, J. Dauwels, J. Hu, S. Korl, L. Ping, and F. R. Kschis-
chang, “The factor graph approach to model-based signal processing,”
Proc. IEEE, vol. 95, pp. 1295–1322, June 2007.

[6] G. D. Forney, Jr., “Codes on graphs: Normal realizations,” IEEE Trans.
Inf. Theory, vol. 47, pp. 520–548, Feb. 2001.

[7] A. P. Worthen and W. E. Stark, “Unified design of iterative receivers
using factor graphs,” IEEE Trans. Inf. Theory, vol. 47, pp. 843–849,
Feb. 2001.

[8] J. Boutros and G. Caire, “Iterative multiuser joint decoding: Unified
framework and asymptotic analysis,” IEEE Trans. Inf. Theory, vol. 48,
pp. 1772–1793, July 2002.

[9] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of lin-
ear codes for minimizing symbol error rate,” IEEE Trans. Inf. Theory,
vol. 20, pp. 284–287, March 1974.

[10] C. Novak, F. Hlawatsch, and G. Matz, “MIMO-IDMA: Uplink mul-
tiuser MIMO communications using interleave-division multiple ac-
cess and low-complexity iterative receivers,” in Proc. IEEE ICASSP-
2007, (Honolulu, Hawaii, USA), pp. 225–228, Apr. 2007.

[11] K. Kusume, G. Dietl, W. Utschick, and G. Bauch, “Performance of in-
terleave division multiple access based on minimum mean square error
detection,” in Proc. IEEE ICC-2007, (Glasgow, UK), pp. 2961–2966,
June 2007.

2564


