
OSCILLATOR PHASE NOISE COMPENSATION USING KALMAN TRACKING

Steffen Bittner, Andreas Frotzscher, Gerhard Fettweis∗

Vodafone Chair Mobile Communications Systems
Technische Universität Dresden, Dresden, Germany

Email: {bittner,frotzsch,fettweis}@ifn.et.tu-dresden.de

Ellie Deng

Dept. of Electrical and Computer Engineering
University of Toronto, Toronto, Canada

ellie.deng@utoronto.ca

ABSTRACT
Phase Noise (PN) is a serious challenge in wireless transmis-

sion systems as it can cause significant degradation of the sys-

tem performance. Recent publications propose iterative PN

compensation algorithms for single or multicarrier systems.

In this paper we will present an unscented Kalman filter PN

tracking algorithm working in time domain, which is inde-

pendent of the underlying system. Furthermore, we propose a

reduced complexity tracking algorithm, where we perform an

interpolation between the estimated PN samples. Simulation

results for an OFDM setup show that by using this technique

the system performance can be improved significantly.

Index Terms— Phase Noise, Kalman Tracking

1. INTRODUCTION

Phase noise (PN) in wireless communication describes a mul-

tiplicative phase distortion during the up/down conversion at

the transmitter and receiver. This distortion is caused by RF

imperfections such as imperfect oscillators. Previous work

mainly focused on PN mitigation in either multicarrier sys-

tems [1] or single carrier systems. In multicarrier systems, PN

is usually estimated in the frequency domain using a LMMSE

estimation approach, which estimates higher order PN com-

ponents [2]. In single carrier systems, PN is for example

tracked using a PLL approach [3].

In this contribution we present an iterative PN compen-

sation algorithm which is applicable for both setups. The al-

gorithm tracks the PN samples using a Kalman filter. In its

original version, the Kalman filter is designed for linear sys-

tems. However, the PN tracking problem is a nonlinear one

(Sec. 3). For nonlinear systems the extended Kalman filter

is a widely used estimation algorithm. But as stated in [4]

the extended Kalman filter is not suitable for strong nonlinear

systems as we have it in the case of PN. For such a nonlinear

setup the authors in [4] propose an unscented transformation.

In this work we adapt the unscented Kalman filtering idea to

the problem of PN tracking. Due to limited space and since
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PN is a more severe problem in multicarrier systems [1], we

will focus on OFDM as one possible example to show the

effectiveness of the proposed scheme.

The remaining paper is organized as follows. An OFDM

system model disturbed by Wiener phase noise is introduced

in Sec. 2. In Sec. 3 we give a detailed description of the

PN compensation algorithm using an unscented Kalman fil-

ter approach. We also propose a reduced complexity ver-

sion based on a linear interpolation. The performance for

AWGN/HiperLan A channels is characterized in Sec. 4. We

conclude the paper with a summary of our findings in Sec. 5.

2. SYSTEM MODEL

We consider a SISO (single-input, single-output) OFDM

transmission system with N subcarriers. Fig.1 shows a sim-

ple transmission chain. Let V be a vector of information bits

Source Encoder OFDM h(n)

ξ(n)

ejφ(n)

r(n)
s(n)V

Π
XC M-QAM S

Fig. 1. OFDM transmission chain

which are first encoded by the outer encoder and interleaved.

The resulting code bit stream is then partitioned into blocks

X containing N · B independent binary digits. Out of these

blocks, B bits are converted into one symbol, thus allowing

to distinguish among M = 2B different constellation points

(e.g. 64-QAM). As part of the transmission process, these

symbols are mapped onto a N × 1 complex vector of sym-

bols S = [S1, · · · , SN ]T . The OFDM modulator takes this

vector and performs an inverse Fast Fourier Transformation

(iFFT) to obtain the time domain signals. A cyclic prefix

(CP) of length Ng is also inserted before transmission to

avoid possible intersymbol interference caused by frequency

selective channels. Hence, the total number of time samples

is Ntot = Ng + N
Phase noise (PN) is modeled by a Brownian motion or

Wiener Process which has a Lorentzian power density spec-

trum. However, the presented PN compensation algorithm is
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also valid for other PN models (e.g. PLL). Since transmitter

PN can be approximated by an effective receiver PN as pre-

sented in [5] we consider the case where PN occurs only at

the receiver. The (n)th PN sample is related to the previous

one as φ(n) = φ(n − 1) + Δφ, where Δφ is a Gaussian dis-

tributed random variable, with zero mean and variance σ2
Δφ =

4π2f2
c cTs. In this notation, Ts describes the sample interval,

c determines the oscillator quality and fc is the carrier fre-

quency. Related to the 3dB single side bandwidth Δf3dB of

the Lorentzian spectrum, c is given by c = Δf3dB/(πf2
c ) [6].

With fsub as the subcarrier spacing of an OFDM system, it

is common to use the single relevant performance parameter

δ3dB as the relative oscillator linewidth with respect to the

subcarrier spacing given by δ3dB = Δf3dB/fsub.

Assuming perfect frequency and timing synchronization,

the received time domain signal can be expressed as r(n) =
(s(n) � h(n))ejφ(n) + ξ(n), where s(n) and h(n) represent

the samples of the transmitted signal and the channel impulse

response, respectively. The term ξ(n) represents the additive

white Gaussian noise (AWGN) with variance σ2
ξ .

3. PHASE NOISE COMPENSATION

Fig. 2 shows a general iterative setup for PN compensation.

The main module is the PN compensation block. PN es-

timation can either be done in frequency domain [2] or in

time domain. In the iterative process, soft information is ex-

changed between each module, see [7] for details. However,

in both cases it is advantageous to bootstrap the iterative pro-

cess by an initial common phase error (CPE) compensation

[5]. After the CPE estimation and decoding a first estima-

tion ŝ(n) of the transmitted signal is available, which can be

used to obtain a better estimation of the PN trajectory, using

â(n) = (ŝ(n) � h(n)) = a(n) + Δa(n) ≈ a(n).
The error between the true and estimated noise-free ver-

sions of the received signal is given by Δa(n). The variance

of Δa(n) can be determined using soft information provided

by the decoder (see [7]). However, due to the coding gain we

observed that the variance of Δa(n) is much smaller than σ2
ξ

in the FER region of interest. Thus we will skip Δa(n) from

now on.

Compensation
OFDM
Demod. Decoder SinkPNr(n)

Π
−1

V̂

Remodulation

Ĉ

Fig. 2. OFDM receiver chain

Frequency domain PN estimation entails the problem that

we try to approximate a piecewise nonperiodic signal (the

Phase Noise sample) with a truncated Fourier series which

implicitly assumes periodicity and hence leads to a high MSE

at the beginning and the end of the time domain signal [7].

Therefore, we propose a Kalman tracking in time domain for

every further iteration. The advantage of the Kalman filter is

that it achieves a much lower estimation error and, as stated

earlier, is also directly applicable for single carrier systems.

Figure 3 depicts the adapted scalar state and observation

model, which is will be used to develop a Kalman filtering

algorithm.

Z−1

ξ(n)/â(n)

y(n)
φ(n)Δφ

ej(·)

Fig. 3. Scalar state/observation model

As we have a deterministic input process, the first system

equation describing the state transmission is given by:

φ(n) = φ(n − 1) + Δφ. (1)

In Eq. (1) we used the fact that the PN increment ( Δφ) can

be considered as process noise. The second system equation,

describing the observation term which is feed to the Kalman

filter, is given as follows:

y(n) = r(n)/â(n) ≈ exp (jφ(n))︸ ︷︷ ︸
D(·)

+
ξ(n)

â(n)
. (2)

Furthermore, the observation model is given by ej(·),
which is a nonlinear transformation. Due to the nonlinear

structure the standard Kalman filtering operation is not appli-

cable. Therefore, the unscented Kalman filter for nonlinear

estimation is used as introduced in [8, 4]. Algorithm 1 de-

scribes the unscented Kalman filtering operation used for

PN estimation in more detail, where we used the scaling

parameters α2 = 1 · 10−3, β = 2 as proposed in [8]. The

index notation (n, n) represents the a-posteriori knowledge

and index (n, n − 1) defines the a-priori information. Typ-

ically the cyclic prefix is long enough for the Kalman filter

to converge, thus the start PN sample is not important and

will be set to “0”. The estimated PN samples φ̂(n) are used

to correct the received signal samples in the time domain:

r̂(n) = r(n) exp(−jφ̂(n)).
The complexity of the proposed algorithm can be reduced

by decreasing the number of samples passed into the Kalman

filter and reconstructing the missing PN samples using linear

interpolation after the filter. Assume we have a code word

length of Ncode samples and assume further we sample ev-

ery Nstep points, then NKF = �Ncode/Nstep� samples are

passed into the filter and Ninterp = Ncode − NKF inter-

polated points are constructed. Each sample passed into the

Kalman filter requires fKF flops and each linear interpolated
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point requires finterp flops. Therefore, it requires a total of

ftotal = fKF · NKF + finterp · Ninterp flops, which re-

sults in a saving in complexity if an interpolation is done of

1 − (fKF + finterp(Nstep − 1))/(NstepfKF ). As an exam-

ple, we consider each addition as one flop and each multi-

plication as three flops for simplicity, thus fKF = 81 flops

and finterp = 16 flops. For Ncode = 3 · 80 and Nstep = 4,

we could achieve a 60% reduction in complexity. However,

interpolation results in a higher MSE, thus an increased error

rate is expected. Therefore, depending on the application, one

may trade SNR loss for efficiency by increasing Nstep.

Input: y(n); Var[y(n)] = Pεε = σ2
ξ/‖â(n)‖; φ̂(0,0) = 0;

Pφ̂,φ̂(0,0) = Var[Δφ]; α2 = 1 · 10−3, β = 2;

λ = α2 − 1; Wm
0 = λ/(1 + λ);

W c
0 = λ/(1 + λ) + (1 − α2 + β);

Wm
1,2 = W c

1,2 = 1/(2 + 2λ)

Result: Phase Estimate φ̂(n,n)

foreach n = 1, · · · , Ncode do
A-priori Info

φ̂(n,n−1) = φ̂(n−1,n−1)

Pφ̂,φ̂(n,n−1) = Pφ̂,φ̂(n−1,n−1) + Var[Δφ]
Unscented Transformation (sigma points)

Φ0(n,n−1) = φ̂(n,n−1)

Φ1,2(n,n−1) = φ̂(n,n−1) ±
√

(1 + λ)Pφ̂,φ̂(n,n−1)

Nonlinear observation function

νi(n,n−1) = exp(jΦi(n,n−1))
Weighted samples

ŷ(n,n−1) ≈
∑

i Wm
i νi(n,n−1)

Covariance Matrix update

Pŷ,ŷ =
∑

i W c
i (νi(n,n−1) − ŷ(n,n−1))·

(νi(n,n−1) − ŷ(n,n−1))
H

Pφ̂,ŷ =
∑

i W c
i (Φi(n,n−1) − φ̂(n,n−1))·

(νi(n,n−1) − ŷ(n,n−1))
H

Kalman Gain

K(n) = Pφ̂,ŷ(Pŷ,ŷ + Pεε)
−1

A-posteriori Info

φ̂(n,n) = φ̂(n,n−1) + K(n)(y(n) − ŷ(n,n−1))
Pφ̂,φ̂(n,n) = Pφ̂,φ̂(n,n−1) − K(n)P

H
φ̂,ŷ

end
Algorithm 1: Unscented Kalman Filtering

4. NUMERICAL RESULTS

The performance of Kalman tracking algorithm was studied

with WLAN(802.11a) related parameters. A non-recursive

rate 1/2 convolutional code with generator polynomial G =
[133, 171]8 and codeword length of 3 OFDM symbols was

used (Ncode = 3 · Ntot = 240 samples). To be conform with

the standard, out of N = 64 carriers 4 are reserved for pilots

and 12 are zero carriers. For modulation 64-QAM was used.

We start the analysis by investigating the performance of

the algorithm with an AWGN channel depicted in Figure 4.

The relative oscillator linewidth δ3dB was set to be 1% in this

case and the step size is 1 (full complexity). The performance

of our proposed algorithm is quite impressive since we are

less than 1dB away from the no phase noise case at a target

frame error rate (FER) of 10−2. Furthermore, we were able

to achieve a 1dB difference from the no phase noise case as

early as the second iteration. Note, that an estimation algo-

rithm working in the frequency domain, which only estimates

a few PN harmonics [2] would result in an error floor at high

SNR due to the non perfect cancelation of the intercarrier in-

terference. However, the Kalman filter would perfectly track

the PN at this region, as it does not assume any periodicity of

the PN signal.
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1stIter. (CPE)

2ndIter. (ICI1)

3rdIter. (ICI2)

No PN

Fig. 4. FER, 64-QAM, AWGN channel, δ3dB = 0.01

From now on a transmission over an HiperLan A chan-

nel is considered. Figure 5 shows the performance results

for both the frequency domain [7] and Kalman tracking al-

gorithms. It is worth mentioning that we gain 2.5dB at the
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10

-3

10
-2

10
-1

10
0

SNR [dB]
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Kalman tracking

CPE

No PN

2ndIter.

4thIter.

Fig. 5. FER 64-QAM, HiperLan A channel, δ3dB = 0.01

target FER of 10−2 at the second iteration using the Kalman
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tracking algorithm compared to the frequency domain one.

The remaining error floor is mainly due to error propagation

of the non perfectly estimated samples ŝ(n), which are used

in the Kalman tracking algorithm. Note, that in the case of

perfectly known symbols (genie knowledge), already the sec-

ond iteration (Iter2) would not show an error floor behavior

in contrast to the second iteration of the frequency domain es-

timation algorithm which only estimates the first harmonic of

the PN trajectory.

Finally, we investigated how the algorithm performs as

a function of different parameters. Figure 6 shows the SNR

loss w.r.t. to no phase noise at FER = 10−2 as a function of

the relative oscillator linewidth δ3dB . We noticed that there

is no SNR loss if δ3dB is better than 0.005 and a 1dB loss at

δ3dB = 0.012 for the fourth iteration. To reduce the algo-

rithm’s complexity, we increase the sampling step size Nstep

as discussed in Sec 3. Figure 7 shows the SNR at FER = 10−2

for different iterations as a function of Nstep. For Nstep = 4,

we have a 1.4dB SNR loss in the fourth iteration while the

complexity is reduced by 60%.
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Fig. 6. SNR loss at FER 10−2 for different iterations versus

δ3dB (64-QAM, HiperLan A Channel)
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Fig. 7. SNR at FER 10−2 for different iterations versus Nstep

(64-QAM, HiperLan A Channel, δ3dB = 0.01)

5. CONCLUSIONS

Phase Noise describes an instantaneous phase fluctuation,

which results in different phasors for each sample. For such

a time variant system Kalman filtering is one way to track

the PN samples. Due to the up/down conversion of the sig-

nal PN acts like a nonlinear distortion. Hence, a nonlinear

estimation approach has to be used. In this work we adapted

the unscented Kalman filtering to get an estimation of the PN

trajectory. The proposed algorithm is suitable for single car-

rier as well as multicarrier systems. The performance of the

given algorithm is evaluated for an OFDM system in terms of

FER showing a significant performance improvement com-

pared to known algorithms. Furthermore, we came up with

a reduced complexity version allowing a considerable saving

in complexity.
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