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ABSTRACT
Unimodular (i.e., constant modulus) sequences with good au-
tocorrelation properties are useful in several areas, including
communications, radar and sonar. The integrated sidelobe
level (ISL) is often used to express the goodness of the au-
tocorrelation properties of a given sequence. In this paper,
we present several cyclic algorithms for the local minimiza-
tion of ISL-related metrics. To illustrate the performance of
the proposed algorithms, we present a number of examples
including the design of sequences that have virtually zero au-
tocorrelation sidelobes in a specified lag interval, and of long
sequences that could hardly be handled by means of other al-
gorithms previously suggested in the literature.

Index Terms— Waveform design, unimodular sequences,
integrated sidelobe level, merit factor, autocorrelation.

1. INTRODUCTION & PROBLEM FORMULATION
Let {xn}N

n=1 denote the sequence to be designed with the uni-
modular constraint |xn| = 1, n = 1, . . . , N and let

rk =

N∑
n=k+1

xnx∗n−k = r∗−k, k = 0, . . . , N − 1 (1)

be the autocorrelation function of {xn}N
n=1, where (·)∗ de-

notes the complex conjugate for scalars and the conjugate
transpose for vectors and matrices. The goodness of the au-
tocorrelation properties of {xn}N

n=1 is often expressed by a
small integrated sidelobe level (ISL) or a large merit factor
(MF), which are defined as

ISL =
N−1∑
k=1

|rk|2 and MF =
|r0|2
2 ISL

=
N2

2 ISL
, (2)

respectively. Unimodular sequences with large MF values are
desired in many applications, including wireless communica-
tions and range compression radar and sonar. In these appli-
cations, an emitted (probing or training) sequence with a large
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MF reduces the risk that the received sequence of interest is
drawn in correlated multipath or clutter interferences. Addi-
tionally, the limitations of the sequence generation hardware
lead to the requirement that the emitted sequence be unimod-
ular. Owing to the significant theoretical and practical inter-
est, the literature is extensive on the design of unimodular
sequences with good correlation properties (hereafter, corre-
lation exclusively means autocorrelation), see [1] –[14] and
the many references therein. Because the ISL metric may be
highly multimodal (i.e., it may have multiple local minima),
stochastic optimization algorithms have been suggested for its
minimization (see, e.g., [3][6][7]). However, these algorithms
are computationally expensive and usually are only effective
forN ∼ 102.
In this paper, we introduce several cyclic algorithms (CA,

see [12][13][14]) for the local minimization of ISL-related
metrics, namely CA-pruned (CAP), CA-new (CAN) and
weighted-CAN (WeCAN). CAN locally minimizes the ISL
metric in Eq. (2) and can be used to design very long se-
quences, up to N ∼ 106 or even larger. CAP and WeCAN
deal with weighted correlation metrics of the form

WISL =
N−1∑
k=1

wk|rk|2, MMF =
|r0|2

2WISL
=

N2

2WISL

wk ≥0, k = 1, . . . , N − 1 (3)

and they can be used for sequence lengthsN ∼ 103.

2. CAP
CAP (CA-pruned) is an extension of the CA in [14]. Define

X̄ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 0
...

. . .
... x1

xN

...
. . .

...
0 xN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(N+P−1)×P

, X̃(N+P−1)×Q = X̄T, (4)

where the P × Q (Q ≤ P ≤ N ) matrix T is made from
Q selected columns of the P × P identity matrix IP . For
example, if we are interested in suppressing rk1

, . . . , rkQ−1
,
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we should select the first column, the (k1 +1)th column, ..., up
to the (kQ−1 +1)th column of IP to construct theT in Eq. (4).
A simple situation is to suppress r1, . . . , rP−1, in which case
we should choose Q = P , which leads to X̃ = X̄ and

X̃∗X̃ =

⎡
⎢⎢⎢⎢⎣

r0 r∗1 · · · r∗P−1

r1 r0
. . .

...
...

. . . . . . r∗k1

rP−1 · · · r1 r0

⎤
⎥⎥⎥⎥⎦

P×P

. (5)

It is easy to observe that |r1|2, . . . , |rP−1|2 can be suppressed
by minimizing ‖X̃∗X̃ − NI‖2 (hereafter ‖ · ‖ denotes the
Frobenius matrix norm). Note that in this case, CAP assumes
wk = 2(P −k) for rk (k = 1, . . . , P −1) in the WISL metric
defined in Eq. (3), and 0weights for the other correlation lags.
In the more general case of suppressing rk1

, . . . , rkQ−1
, X̃∗X̃

may not be a Toeplitz matrix and a general expression for wk

does not exist. Yet we can still suppress rk1
, . . . , rkQ−1

by
minimizing the criterion ‖X̃∗X̃ − NI‖2, which is “almost
equivalent” to the following optimization problem:

min
{xn}N

n=1
;U

∥∥∥X̃−
√

NU

∥∥∥
2

(6)

s.t. U∗U = I and |xn| = 1, n = 1, . . . , N

whereU is an (N + P − 1)×Q semi-unitary matrix.
Eq. (6) can be solved in the following cyclic way. The ma-

trix X̃ is first set to an initial value. Then Eq. (6) is iteratively
minimized by fixing {xn}N

n=1 to compute U, then fixing U

to compute {xn}N
n=1 and so on, until a given stop criterion is

satisfied. We refer the readers to [14] for details.

3. CAN
It is well-known that

∣∣∣∣∣
N∑

n=1

xne−jωn

∣∣∣∣∣
2

=

N−1∑
k=−(N−1)

rke−jωk � Φ(ω) (7)

for any ω ∈ [0, 2π] (see, e.g., [15]). Then it is not difficult
to prove that the ISL metric in Eq. (2) is proportional to the
following frequency-domain metric:

ISL ∝
2N∑
p=1

[Φ(ωp)−N ]
2

=

2N∑
p=1

⎡
⎣
∣∣∣∣∣

N∑
n=1

xne−jωpn

∣∣∣∣∣
2

−N

⎤
⎦

2

,

where ωp = 2πp/2N, p = 1, . . . , 2N . The above criterion
leads to the following minimization problem:

min
{xn}N

n=1
;{ψp}2N

p=1

2N∑
p=1

∣∣∣∣∣
N∑

n=1

xne−jωpn −
√

Nejψp

∣∣∣∣∣
2

. (8)

Define a unitary 2N×2N matrixA = 1√
2N

[
a1 · · · a2N

]

where a∗p =
[
e−jωp · · · e−j2Nωp

]
. Then the criterion in

Eq. (8) can be rewritten as ‖A∗z− v‖2 (to within a multi-
plicative constant), where z =

[
x1 · · · xN 0 · · · 0

]T

and v = 1√
2

[
ejψ1 · · · ejψ2N

]T
. Similarly to CAP, the

new criterion ‖A∗z− v‖2 can be cyclically minimized by the
following algorithm which we call CAN (CA-new):
Step 0: Initialize {xn}N

n=1 by a randomly generated or a
good existing sequence such as the Golomb sequence [5].
Step 1: Fix {xn}N

n=1 and compute ψp = arg(fp), p =
1, . . . , 2N where f = A∗z denotes the FFT of z.
Step 2: Fix {ψp}2N

p=1 and compute xn = ej arg(gn), n =
1, . . . , N where g = Av denotes the IFFT of v (note that
‖A∗z− v‖2 = ‖z−Av‖2).
Step 3: Repeat Steps 1 and 2 until a pre-specified stop
criterion is satisfied (e.g., ‖x(i) − x(i+1)‖ < 10−3, where
x(i) is the sequence obtained at the ith iteration).
Because of FFT operations, the CAN algorithm can be

used to design sequences up to N ∼ 106 or even larger.

4. WECAN
WeCAN deals with the WISL metric in a similar way that
CAN deals with the ISL metric. It is not difficult to prove that

WISL =

N−1∑
k=1

γ2
k|rk|2 =

1

4N

2N∑
p=1

[Φ̃(ωp)− γ0N ]2, (9)

where Φ̃(ωp) =
∑N−1

k=−(N−1) γkrke−jωpk = x̃∗p(γ0Γ)x̃p,

Γ =
1

γ0

⎡
⎢⎢⎢⎢⎣

γ0 γ1 · · · γN−1

γ1 γ0
. . .

...
...

. . . . . . γ1

γN−1 · · · γ1 γ0

⎤
⎥⎥⎥⎥⎦

, (10)

x̃p =
[
x1e

−jωp x2e
−j2ωp · · · xNe−jNωp

]T and ωp =
2πp/2N, p = 1, . . . , 2N . The γk (real-valued and γk =
γ−k) above is related to the weight wk in Eq. (3) as wk = γ2

k ,
and it is required that γ0 be chosen sufficiently large to ensure
the positive semi-definiteness of Γ (denoted as Γ ≥ 0).
By substituting x̃∗p(γ0Γ)x̃p for Φ̃(ωp) in Eq. (9) we can

get WISL =
γ2

0

4N

∑2N

p=1

[
x̃∗pΓx̃p −N

]2, which suggests the
following minimization problem

min
{xn}N

n=1
,{αp}2N

p=1

2N∑
p=1

‖Cx̃p −αp‖2 (11)

s.t. ‖αp‖2 = N, p = 1, . . . , 2N,

|xn| = 1, n = 1, . . . , N,

where the matrixC is a square root of Γ, i.e., Γ = CT C.
A cyclic algorithm for Eq. (11), which is based on FFT

operations and similar to the CAN algorithm in Section 3, can
be derived and we call it WeCAN (the details are not shown
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Fig. 1. The merit factors of the Frank, Golomb, CAN(F) and
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2 up to 100
2.

here due to space limit). Note that, because of the N × N
weighting matrixC, WeCAN requiresN times more FFT op-
erations than CAN. Nonetheless, WeCAN can still be used for
relatively large values ofN , up to N ∼ 104.

5. NUMERICAL EXAMPLES
5.1. ISL Design
We compare the merit factors of the Golomb sequence ([5]),
of the Frank sequence ([9]), and of the CAN sequence ini-
tialized by one of these two types of sequences (denoted
as CAN(G) and CAN(F), respectively). Because Frank se-
quences are only defined for lengths that are perfect squares
(note that the CAN sequence does not have such a limita-
tion), we let N = 32, 52, 102, 152, 202, 302, 702 and 1002.
The results are shown in Figure 1 using a log-log scale. For
all sequence lengths we consider, the CAN(G) and CAN(F)
sequences give close merit factors; both are much larger than
the merit factors given by the Golomb or Frank sequence.
When N = 104, the CAN(G) sequence provides the largest
merit factor of 1839.8. Additionally we compute the CAN(G)
sequence of length 220 (longer than 106), whose MMF is
53076 and is more than thirty times larger than the MMF
given by the Golomb sequence of the same length (which is
1608).

5.2. WISL Design - A First Example
Consider the design of a data sequence of length N = 100,
with the aim of suppressing the correlations r1, . . . , r25 and
r70, . . . , r79. The MMF weights in Eq. (3) are correspond-
ingly chosen as: wk = 1 if k ∈ [1, 25] ∪ [70, 79] and wk =
0 otherwise.
We use theWeCAN algorithm in Section 4 to generate the

sequence. We choose γk = 1 for k ∈ [1, 25] ∪ [70, 79] and
γk = 0 for k ∈ [26, 69]∪ [80, 99]. γ0 is chosen to be 12.05 so
that Γ ≥ 0 in Eq. (10). Figure 2 shows the correlation levels
(20 log10 |rk/r0|) of the so-obtained WeCAN sequence and
the CAN(G) sequence of N = 100 from the last subsection,
together with their MMF values. As expected, the WeCAN
sequence shows much lower correlation levels at the required
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Fig. 2. Correlation levels of the CAN(G) and the WeCAN sequence
of length N = 100, with the aim of suppressing r1, . . . , r25 and
r70, . . . , r79.

time lags and the MMF of the WeCAN sequence is signifi-
cantly larger than that of the CAN(G) sequence.

5.3. WISL Design - A Second Example
Consider, once again, the design of a data sequence of length
N = 100 but nowwith the aim of suppressing the correlations
r1, . . . , r39. In this case the MMF weights in Eq. (3) become
wk = 1 if k ∈ [1, 39] and wk = 0 otherwise. We use the
CAP algorithm in Section 2 to generate the sequence. We
choose P = Q = 40 and thus X̃ = X̄ in Eq. (4).
Figure 3 shows the correlation levels of the so-obtained

CAP sequence and the CAN(G) sequence of N = 100, to-
gether with their MMF values. The CAP sequence achieves
practically 0 correlation sidelobes from r1 up to rP−1 (−300dB
is close to 10−16, the smallest number that can be properly
handled in MATLAB), and the corresponding MMF can be
considered to be infinity. It is also worth mentioning that the
CAP algorithm is able to provide an infinite MMF in principle
only if N − 1 ≥ 2(P − 1). The reason is that the number of
the degrees of freedom is N − 1 (there are N − 1 free phases
and the initial phase does not matter) and our goal is to match
2(P − 1) real numbers (i.e., the real and imaginary parts of
r1, . . . , rP−1). In the next example,N = 200 and P = 40, in
which case the CAP sequence also provides an infinite MMF.
Remark: In the examples in this and the last subsection,

we use a randomly generated sequence to initialize CAP or
WeCAN. Different initializations lead to different sequences,
which however, have similar correlation properties. Another
fact worth pointing out is the computational efficiency of the
proposed algorithms: each of the above numerical examples
(for each N ) can be finished in MATLAB in a normal PC
within minutes, except the computation of the CAN(G) se-
quence of length 220 which takes hours.

5.4. FIR Channel Estimation
Consider an FIR channel impulse response {hp}P−1

p=0 whose
estimation is our main goal. Suppose we transmit a probing
sequence {xn}N

n=1 and obtain the received signal y = X̄h +

e, where X̄ is as defined in Eq. (4), y =
[
y1 · · · yN+P−1

]T ,
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Fig. 3. Correlation levels of the CAN(G) and the CAP sequence of
length N = 100, with the aim of suppressing r1, . . . , r39.

h =
[
h0 · · · hP−1

]T and e =
[
e1 · · · eN+P−1

]T

({en}N+P−1
n=1 is i.i.d. complex Gaussian white noise of zero

mean and variance σ2). We use x̄p, the pth column of X̄, as
a “matched filter” to determine hp from y: ĥp = 1

N
x̄∗py.

Let P = 40 and {hp}P−1
p=0 is randomly generated (we let

both the real and imaginary part of hp exponentially decrease
and then add some random noise). We compare the Golomb
sequence and the CAP sequence. N is fixed at 200 and σ2

is varied from 10−6 to 1. For each pair (N, σ2), 500 Monte-
Carlo trials are run (the noise e is varied) and the MSE of ĥ is
shown in Figure 4. Due to better correlation properties (actu-
ally 0 sidelobes from r1 to rP−1), the CAP sequence gener-
ates consistently smaller MSE than the Golomb sequence. In
particular, the MSE of ĥ corresponding to the CAP sequence
will become 0 if σ2 goes to 0, while the performance of the
Golomb sequence is limited to a certain level because of its
non-zero correlation sidelobes.

6. CONCLUDING REMARKS
We have presented several cyclic algorithms, namely CAP,
CAN and WeCAN which can be used to design unimodular
sequences that have good autocorrelation properties. CAN
can be used to design very long sequences (of lengthN up to
106), which can hardly be handled by other algorithms pro-
posed in the previous literature. CAN deals with the ISL met-
ric whereas CAP andWeCAN aim to minimize weighted-ISL
metrics. We have shown that, in particular, CAP and WeCAN
can be used to design sequences that have virtually zero au-
tocorrelation sidelobes in a specified lag interval. CAP and
WeCAN can be used for N ∼ 103 or larger, depending on
howmany lags are considered. A number of numerical exam-
ples have been provided to demonstrate the good autocorre-
lation properties of the unimodular sequences designed using
the proposed algorithms.
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