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ABSTRACT

The paper first recalls the Blahut Arimoto algorithm for computing
the capacity of arbitrary discrete memoryless channels, as an exam-
ple of an iterative algorithm working with probability density esti-
mates. Then, a geometrical interpretation of this algorithm based
on projections onto linear and exponential families of probabilities
is provided. Finally, this understanding allows also to propose to
write the Blahut-Arimoto algorithm, as a true proximal point algo-
rithm. it is shown that the corresponding version has an improved
convergence rate, compared to the initial algorithm, as well as in
comparison with other improved versions.

Index Terms— Iterative algorithm, Blahut-Arimoto algorithm,
Geometrical interpretation, Convergence speed, Proximal point
method.

1. INTRODUCTION

In 1972, R. Blahut and S. Arimoto [1, 2] received the Information
Theory Paper Award for their Transactions Papers on how to com-
pute numerically the capacity of memoryless channels with finite
input and output alphabets.

The Blahut-Arimoto algorithm was recently extended to chan-
nels with memory and finite input alphabets and state spaces [3].

Recently, an algorithm was proposed for computing the capacity
of memoryless channels with continuous input and/or output alpha-
bets where the Blahut-Arimoto algorithm is not directly applied [4].

In [5], information geometric interpretation of the Blahut-
Arimoto algorithm in terms of alternating information projection
was provided. Based on this last approach, Matz [6] proposed
a modified Blahut-Arimoto algorithm that converges significantly
faster than the standard one.
The algorithm proposed by Matz is based on an approximation of
a proximal point algorithm. Instead, we propose a true proximal
point reformulation that permits to accelerate the convergence speed
compared to the classical Blahut-Arimoto algorithm and also to the
approach in [6].

Our contributions regarding capacity computation for discrete
memoryless channels (DMCs) in this paper are:

• Geometrical interpretation of Blahut-Arimoto algorithm in
terms of projection onto linear and exponential families of
probability.

• True proximal point interpretation.
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• Improvement of the convergence rate based on the proximal
point formulation.

2. TOOLS

2.1. Kullback-Leibler divergence and Mutual Information

The Kullback-Leibler divergence (KLD) [7, 8] is defined for two
probability distributions p = {p(x), x ∈ X} and q = {q(x), x ∈ X}
of a discrete random variable X taking their values x in a discrete set
X by:

D(p||q) =
∑
x∈X

p(x) log
p(x)

q(x)

The KLD(also called relative entropy) has some of the properties of
a metric: D(p||q) is always non-negative, and is zero if and only if
p = q. However, it is not a true distance between distributions since
it is not symmetric (D(p||q) �= D(q||p)) and does not satisfy the
triangle inequality in general. Nonetheless, it is often useful to think
of relative entropy as a distance between distributions.
The channel capacity is given by:

Fig. 1. Channel model

C = max
p(x)

I(X,Y)

Where the mutual information of the two discrete random variables
X and Y is given by :

I(X,Y) = Ep{D(p(y|x)||p(y))}

2.2. Linear and exponential families of probability

A linear family of probability is defined as [5] :
∀f1, f2, . . . , fK ∈ X and ∀α1, α2, . . . , αK

L = {p : Ep(fi(x)) = αi, 1 ≤ i ≤ K}
The expected value Ep(fi(x)) of the random variable x with respect
to the distribution p(x) is restricted to αi. A linear family of proba-
bility is characterized by {fi(x)}1≤i≤K and {αi}1≤i≤K .
The vector α = [α1, . . . , αk] serves as a coordinate system in the
manifold of the linear family. These coordinates are called ”mixture
coordinates”.

An exponential family [5] of discrete probability distributions
p(x) on an alphabet X is the set
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E = {p : p(x) =
Q(x) exp

∑K
i=1(θifi(x))∑

x(Q(x) exp
∑K

i=1(θifi(x)))
}

The exponential family E is completely defined by fi(x) and Q(x)
and parameterized by θi.
The distribution Q(x) is itself an element of the exponential family.
Any element of E could play the role of Q(x), but if it is necessary
to emphasize the dependence of E on Q(x), we will write EQ.

3. BLAHUT-ARIMOTO-TYPE ALGORITHM

3.1. The original Blahut-Arimoto algorithm

Let consider the case of a discrete memoryless channel with input
symbol X taking its values in the set {x0, . . . , xM} and output sym-
bol Y taking its values in the set {y0, . . . , yN}. This channel is
defined by its transition probabilities channel matrix Q as [Q]ij =
Qi|j = Pr(Y = yi|X = xj). We also define pj = Pr(X = xj)
and qi = Pr(Y = yi).

The mutual information is given by:

I(X,Y) = I(p,Q) =

M∑
j=0

N∑
i=0

pjQi|j log
Qi|j
qi

=

M∑
j=0

pjD(Qj ||q)

And the channel capacity by:

C = max
p

I(p, Q)

By solving this maximization problem and taking into consider-
ation the normalization condition:

∑
x p(x) = 1, we find:

pj =
pj exp(D(P (Y |X=xj)||P (Y )))∑
j pj [exp(D(P (Y |X=xj)||P (Y )))]

Hence, the Classical Blahut-Arimoto algorithm [1, 2] is an iterative
procedure:

p(k+1)(x) =
p(k)(x) exp(Dk

x)∑M
x p(k)(x) exp(Dk

x)
(1)

with Dk
x = D(p(Y = y|X = x)||p(Y = y(k))).

3.2. Geometrical Interpretation of Blahut-Arimoto Algorithm

The Blahut-Arimoto algorithm in (1) can be recalculated as a mini-
mization problem:⎧⎨

⎩
minp D(p(x)||p(k)(x))

s.c I(k)(p(x)) = α
s.c

∑
x p(x) = 1

where I(k)(p(x)) = Ep{D(p(y|x)||pk(y))} is the current capacity
estimate at the iteration k and α is related to the Lagrangian multi-
plier of this minimization problem.
The Lagrangian corresponding to this minimization problem can be
written as follow:

L = D(p(x)||p(k)(x)) − λ1(I
(k)(p(x)) − α) − λ2(

∑
x p(x) − 1)

∂L
∂p(x)

= 0 ⇒ log(p(x)) + 1− log(p(k)(x))− λ1D
k
x − λ2 = 0 and

p(x) = p(k)(x) exp(λ2 − 1) exp(λ1D
k
x)

Taking into consideration the normalization constraint, we can easily
obtain that exp(λ2 − 1) = 1∑

x p(k)(x) exp(λ1Dk
x)

and p(k+1)(x) =

p(k)(x) exp(λ1Dk
x)∑

x p(k)(x) exp(λ1Dk
x)

In the following, we will see that this parameter λ1 is a step size
parameter which, for convenient values, can accelerate the conver-
gence speed of the classical Blahut-Arimoto algorithm in which
λ1 = 1.
So the Blahut-Arimoto Algorithm can be interpreted as the pro-
jection of p(k)(x) onto a linear family of probability L at the point

p(k+1)(x) where L is defined by f1(x) = Dk
x = D(p(y/x)||p(k)(y))

and αk
1 such as Ep(Dk

x) = αk
1 .

By choosing increasing αk
1 , we would ensure that the mutual in-

formation increases from one iteration to the other (I(k+1)(p(x)) ≥
I(k)(p(x))). However, this quantity is only implicitly defined in the
algorithm and an appropriate choice is not available.In the following,
we show that this problem will be solved based on a proximal point
interpretation that ensures that the mutual information increases dur-
ing iterations.

Note that this linear family of probability is changing from one
iteration to the other.
On the other hand, the Blahut-Arimoto algorithm can be interpreted
as the projection of a probability density function (pdf) onto an
exponential family of probability E defined by Q(x) = p(k)(x),

f
(k)
1 (x) = Dk

x and parametrized with θ
(k)
1 at the point p(k+1)(x).

To do this, we should solve this problem:{
min

θ
D(R(x)||p(x, θ))

p(x, θ) = Q(x)exp(θf1(x)∑
x Q(x)exp(θf1(x))

where R(x) is a certain pdf. We try now to find some inter-
esting characteristics of R(x). To do this, let solve the min-

imization problem given above.
∑

x
∂(R(x) log p(x))

∂θ
= 0 with

log p(x, θ) = log Q(x) + θf1(x) − log(
∑

x Q(x) exp(θf1(x)))

So
∑

x R(x)f1(x) −
∑

x R(x)
∑

x Q(x)f1(x) exp(θf1(x))∑
x Q(x) exp(θf1(x))

= 0

Hence
∑

x R(x)f1(x) −
∑

x Q(x)f1(x) exp(θf1(x))∑
x Q(x) exp(θf1(x))

∑
x R(x) = 0

leading to
∑

x (R(x) − p(x, θ))f1(x) = 0 having that
∑

x R(x) =

1 and p(x, θ) = Q(x) exp(θf1(x))∑
x Q(x) exp(θf1(x))

.

We obtain ∑
x(R(x) − p(k+1)(x))Dk

x = 0

Which can be reformulated as

I(R, Q) = ER(Dk
x) = E

(k+1)
p (Dk

x) = I(p(k+1)(x), Q) ≥
I(p(k)(x))

Hence the Blahut-Arimoto algorithm can be interpreted as the pro-
jection of pdfs R(x) with higher mutual information than I(p(k)(x))

onto an exponential family E defined by Q(x) = p(k)(x), f
(k)
1 (x) =

Dk
x and parameterized by θ

(k)
1 = 1/λk at the point p(k+1)(x). Note

that this exponential family is also changing from iteration to another

since Q(x) and f
(k)
1 (x) depends on the iteration. Here again, an ap-

propriate choice of the parameter for increasing convergence rate is
difficult, because of the implicit definition of the family. Thus, a
proximal point interpretation maximizing explicitly the mutual in-
formation is considered with a given penalty term.

3.3. Proximal point interpretation of B.A. and amelioration in
terms of convergence speed

Following the results above, and based on a proximal point inter-
pretation, we can solve the problem stated by the implicit definition
of the families. In fact, we proposea clear equivalence with a true
proximal point interpretation, in which all constants are explicitly
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defined, thus allowing to propose convergence rate improvement. It
is easily shown that the Blahut-Arimoto algorithm is equivalent to

p(k+1)(x) = arg max
p

{I(k)(p(x)) − D(p(x)||p(k)(x))} (2)

In fact, by deriving this expression over p(x) and set it equal to zero,
we find exactly the iterative expression of the Blahut-Arimoto algo-
rithm.

But till now we cannot say that the Blahut-Arimoto algorithm
can be interpreted as a proximal point method since the cost func-
tion I(k)(p(x)) depends on the iterations, just like the families were
depending on the iterations. In fact, a true proximal point algorithm
can be written for a maximization problem [9] as follow :

θ(k+1) = arg max
θ

{ξ(θ) − βk‖θ − θ(k)‖2} (3)

in which ξ(θ), the cost function to be maximized, is independent

from the iterations, ‖θ − θ(k)‖2 is a penalty term which ensures that

the update θ(k+1) remains in the vicinity of θ(k) and βk is a sequence
of positive parameters. In [10], Rockafellar showed that superlinear
convergence of this method is obtained when the sequence βk con-
verges towards zero.
The definition of the proximal point algorithm in (3) can be general-
ized to a wide range of penalty terms leading to this general formu-
lation:

θ(k+1) = arg max
θ

{ξ(θ) − βkf(θ, θ(k))}

where f(θ, θ(k)) is always non negative and f(θ(k), θ(k)) = 0.
The mutual information I(p(x)) can be expressed as:

I(p(x)) = I(k)(p(x)) − D(q(y)||q(k)(y)) (4)

Introducing (4) in (2) leads to

p(k+1)(x) =

arg maxp{I(p(x)) − (D(p(x)||p(k)(x)) − D(q(y)||q(k)(y)))}

This new formulation establishes a clear link with the definition of
the capacity based on the mutual information. However, for a true
proximal pint formulation, we need to show that:

D(p(x)||p(k)(x)) − D(q(y)||q(k)(y)) ≥ 0

with equality iff p(x) = p(k)(x) and q(y) = q(k)(y) in order to
prove that the Blahut-Arimoto is a proximal point algorithm.
The penalty term D(p(x)||p(k)(x)) − D(q(y)||q(k)(y)) can be

rewritten as Ep(x,y)[log
p(x)

∑
x̃ p(y|x̃)p(k)(x̃)

p(k)(x)
∑

x̃ p(y|x̃)p(x̃)
].

We can also write according to Jensen’s inequality [7] :

E(p(x,y)[− log
p(k)(x)

∑
x̃ p(y|x̃)p(x̃)

p(x)
∑

x̃ p(y|x̃)p(k)(x̃)
] (5)

≥ − log(
∑

y

∑
x

p(x, y)) = 0 (6)

This proves that the Blahut-Arimoto algorithm can be interpreted
as a true proximal point method where the cost function is the true
mutual information and the penalty term reads

D(p(x)||p(k)(x)) − D(q(y)||q(k)(y))

The corresponding proximal point algorithm reads:

p(k+1)(x) = arg maxp(x)

{
I(p(x)) − λk(D(p(x)||p(k)(x)))

−D(q(y)||q(k)(y))}
}

(7)
where λk is the step size introduced in order to accelerate the con-
vergence rate of the classical Blahut-Arimoto algorithm.
By deriving this function

I(p(x)) − λk(D(p(x)||p(k)(x)) − D(q(y)||q(k)(y)))

and set it equal to zero we find:

p(k+1)(x) = p(k)(x) exp
{∑

y p(y|x) log q(y)

q(k)(y)
− 1

λk

+ 1
λk

∑
y p(y|x) log p(y|x)

q(y)

}
Here, it is important to note that we can obtain the classical case by
simply replacing λk by 1.
Moreover, we can also obtain the approach proposed by Matz [6]
by intuitively replacing the probability distribution q(y) in the right
hand of the equation by the same distribution calculated at the pre-
vious iteration (q(k)(y)). Namely:

p(k+1)(x) = p(k)(x) exp
{∑

y p(y|x) log q(k)(y)

q(k)(y)
− 1

λk

+ 1
λk

∑
y p(y|x) log p(y|x)

q(k)(y)

}
After normalization, we get p(k+1)(x) = p(k)(x) exp(Dk

x/λk)
which is the expression of Matz’s approach. This is globally similar
to the One-Step-Late algorithm suggested by Green[11]

We conclude that Matz’s approach is based on an approximation
of the proximal point method, but what is lost in comparison with
the true proximal point method is the guarantee that the method
converges, since convergence conditions must be reviewed again.
We can write according to (7):

I(p(k+1)(x)) −
λk(D(p(k+1)(x)||p(k)(x)) − D(q(k+1)(y)||q(k)(y))) ≥

I(p(k)(x)) − λk(D(p(k)(x)||p(k)(x)) − D(q(k)(y)||q(k)(y)))

Hence

I(p(k+1)(x)) ≥
I(p(k)(x))+λk(D(p(k+1)(x)||p(k)(x)) − D(q(k+1)(y)||q(k)(y)))

To ensure the increasing of the mutual information during iterations,
we must have:

I(p(k+1)(x)) ≥ I(p(k)(x))

So that λk(D(p(k+1)(x)||p(k)(x)) − D(q(k+1)(y)||q(k)(y))) ≥ 0
which is true, from (5) for every λk ≥ 0 which is not true in the
approach proposed by Matz. In our method, we choose λk such
that:

maxλk λk(D(p(k+1)(x)||p(k)(x)) − D(q(k+1)(y)||q(k)(y)))

in which p(k+1)(x) and q(k+1)(y) depend on λk.

This ensures that the difference between I(p(k+1)(x)) and I(p(k)(x))
is as maximum as possible from one iteration to the other one. Note
that this maximization problem is solved by the conjuguate gradient
method which gives the most convenient value of the step size λk
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comparing to the approach proposed by Matz.
Note that, in terms of algorithmic complexity, the updated value of
λk in each iteration requires:
(N+M+1) divisions and (N+M) multiplications in Matz’s approach.
(2N+M+1) divisions, (2N+M+2) multiplications and 2 additions in
our case based on the proximal point method.
Hence, our method requires less than twice operations per iteration
compared to the approach proposed by Matz, however, it converges
faster (as we can see in the simulation results showed below, the it-
eration number is divided by two in the worst case). A compromise
must be established depending on our interests.

4. SIMULATION RESULTS

First, we test the 3 versions of the Blahut-Arimoto iterative algorithm
on a Discrete Binary Symmetric Channel (DBSC) defined by the
transition matrix :

Q =

{
0.7 0.2 0.1
0.1 0.2 0.7

}
The results (fig.2) show that the channel capacity is achieved after 20
iterations in the classical case, 7 iterations in Matz’s approach and 4
iterations in our case (with a precision of 10−11).

Fig. 2. Comparision between the 3 approaches in the case of a DBSC chan-
nel

A second example intends to characterize better the efficiency of
our method in comparison with the one by Matz. In order to do so we
need a higher dimension problem. We have chosen the discretization
of some continuous Gaussian Bernouilli-Gaussian channel in order
to form a transition channel matrix Q with higher dimensions. Such
a channel is defined as follows :

yk = xk + bk + γk

where

• b ∼ N (0, σ2
b )

• γk = ekgk with e : Bernouilli(p) sequence

• g ∼ N (0, σ2
g) with σ2

b 
 σ2
g

Hence

yk = xk + nk

with

p(nk) = (1 − p)N (0, σ2
b ) + pN (0, σ2

b + σ2
g)

The output yk has been discretized on 40 values, and the input
xk on 10 values. The results plotted on (fig.3) for parameters
(p = 0.3, σb = 0.01, σg = 1) show the acceleration of the
Blahut-Arimoto algorithm from 14 iterations in Matz’s approach to
7 iterations in our method.

Fig. 3. Comparision between the 2 approaches in the case of a Gaussian
Bernouilli-Gaussian channel

5. CONCLUSIONS

We have proposed geometrical interpretations and improvements on
the Blahut-Arimoto (BA) algorithm for computing the capacity of
discrete memoryless channels (DMC). Based on the true proximal
point approach and solving the maximization problem with the con-
jugate gradient method, we have accelerated the convergence rate of
this iterative algorithm compared to the aproach proposed by Matz
which is based on an approximation of the proximal point method.
We are currently investigating the use of similar techniques for im-
proving the convergence rate of other iterative algorithms.

6. REFERENCES

[1] S. Arimoto, “An algorithm for computing the capacity of arbi-
trary discrete memoryless channels,” IEEE Trans. Inf. Theory,
vol. 18, pp. 14–20, 1972.

[2] R. E. Blahut, “Computation of channel capacity and rate-
distortion functions,” IEEE Trans. Inf. Theory, vol. 18, pp.
460–473, 1972.

[3] F. Dupuis, W. Yu, and F. Willems, “Arimoto-Blahut algorithms
for computing channel capacity and rate-distortion with side-
information,” in ISIT, 2004.

[4] J. Dauwels, “On graphical models for communications and
machine learning: Algorithms, bounds, and analog implemen-
tation,” Ph.D. dissertation, May 2006.
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