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ABSTRACT

We address optimal model estimation for model-based vector quan-
tization for both the constrained resolution (CR) and constrained en-
tropy (CE) cases. To this purpose we derive under high-rate (HR)
theory assumptions the rate-distortion (RD) relations for these two
quantization scenarios assuming a Gaussian model. Based on the
RD relations we show that the maximum likelihood (ML) criterion
leads to optimal performance for CE quantization, but not for CR
quantization. We introduce a new model estimation criterion for CR
quantization that is optimal (under HR theory assumptions) in terms
of the RD relation. Our experiments confirm that the proposed cri-
terion for model identification outperforms the ML criterion for a
range of conditions.

Index Terms— Constrained resolution, model-based quantiza-
tion, model estimation, rate-distortion relation, high-rate theory.

1. INTRODUCTION

Transmission networks are becoming increasingly heterogeneous. In
the area of source coding this has led to the need for scalable quantiz-
ers that can adapt to any transmission rate. Recently several practical
methods were proposed that facilitate the creation of such scalable
quantizers given a source described by a probabilistic model. So-
lutions for both the constrained resolution (CR) and the constrained
entropy (CE) [1] constraints have been given. For the case of a Gaus-
sian mixture model (GMM) of the source, Subramaniam and Rao
[2] introduced a practical CR quantization scheme, while [3] and [4]
proposed practical solutions for the CE case. All these methods are
based on high-rate (HR) theory approximations [5], but, as experi-
ments show, they give satisfactory results for low rates as well [6]. In
audio and speech coding, the techniques were successfully applied
to the quantization of the line spectral frequencies (LSF) based on a
GMM [2, 4], to direct quantization of the signal based on a GMM
[7], and to signal quantization using an adaptive autoregressive (AR)
model [8, 6].

To our best knowledge, the optimality of the model estimation
criterion in terms of the quantization performance has not been ad-
dressed in a general sense. The maximum likelihood (ML) criterion
is generally used for this purpose [2, 4, 6, 7, 8].

In this paper we derive the optimal criteria for model parame-
ter estimation, under HR approximations. We first derive the rate-
distortion (RD) relations (given a data sequence to quantize) for CE
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and CR quantizers (as in [2] and [4]) based on a single-Gaussian
model that varies over time. Analyzing these RD relations we show
that the ML criterion results in optimal performance for the CE case
but not for the CR case. For the CE case, the result is consistent
with the minimum description length (MDL) principle [9, 10] but
the result for the CR case is new. We call the new model estimation
criterion for CR quantization CR-MDL. Using two coding schemes,
our experiments confirm that the CR-MDL criterion outperforms the
ML criterion. We analyze the case of a single Gaussian model vary-
ing in time, covering both the GMM-based quantization [2, 3] and
the AR model-based quantization [6]. However, the framework is
general, and can be extended to include other distributions, such as
the generalized Gaussian distribution (GGD) , for which the ML cri-
terion is also not optimal in the CR case.

Related to our proposal is the recent work of Duni and Rao [11]
that aims to design optimal CR GMM-based quantizers. In contrast,
we optimize the probabilistic data model using as criteria the perfor-
mance of CR and CE quantizers based on the estimated model. Our
theory is not restricted to GMM-based systems.

This paper is organized as follows. In section 2 we briefly de-
scribe the Gaussian model-based CR and CE quantization schemes
considered here. In section 3 we derive the RD relations, we in-
troduce CR-MDL estimation criterion, and we give a practical opti-
mization method for this criterion. The results are given in section
4, and the conclusions are drawn in section 5.

2. MODEL-BASED QUANTIZATION

In this section we describe the principles of Gaussian-model based
quantization under HR assumptions in the CR and CE cases (see e.g.
[1]). These methods are based on scalar quantization in the mean-
removed Karhunen-Loeve transform (KLT) domain [12].

We consider a k-dimensional random Gaussian vector S =
[S1, . . . , Sk]T with mean vector μ and covariance matrix Σ, i.e.,
S ∼ N (μ, Σ). Let the source vector s be a particular realization
of the random vector S. Let Σ = UΛUT be the eigenvalue de-
composition of the covariance matrix, where U is an orthogonal
matrix (UT U = I) and Λ = diag{λ1, . . . , λk} is a diagonal matrix
of eigenvalues. The linear transform UT decorrelating the random
vector S is the KLT.

Given a fixed budget of R bits per vector, CR scalar quantiza-
tion minimizing the mean squared error (MSE) distortion of source
vector s consists of the following steps (see e.g., [2]):

1. Remove the mean, apply the KLT, normalize for standard de-
viation

√
λi, and apply the optimal Gaussian scalar compres-

sor for each dimension i (Eq. (1)), where φ(·) is the cumula-
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tive distribution function for a Gaussian random variable with
zero mean and unit variance.

2. Quantize ui with a scalar quantizer Qu
Li

: ui → ûi uniform
on the interval (0, 1) with Li levels computed using Eq. (2).

3. Reconstruct the quantized source vector ŝ (Eq. (3)).

x = Λ−1/2UT (s − μ), ui = φ(xi/
√

3) (1)

log2 Li = R/k + 0.5 log2

(
λi/

∏k

l=1
λ

1/k
l

)
(2)

x̂i =
√

3 · φ−1(ûi), ŝ = UΛ1/2x̂ + μ (3)

For the CE case with MSE distortion, uniform quantization is
asymptotically optimal [5]. As in [4], we consider here scalar uni-
form quantization with a fixed step size Δ in the mean-removed KLT
domain, which can be summarized as follows:

1. Remove the mean and apply the KLT (Eq. (4)).

2. Quantize each dimension yi with a uniform scalar quantizer
QΔ : yi → ŷi having a constant step size Δ. Using an arith-
metic coder as an entropy coder [4], the effective codeword
length l (in bits) is given by Eq. (5), where N(·; μ, λ) de-
notes the probability density function (pdf) of Gaussian ran-
dom variable with a mean μ and variance λ.

3. Reconstruct the quantized source vector ŝ (Eq. (6)).

y = UT (s − μ) (4)

l = −
∑k

i=1
log2

∫ ŷi+Δ/2

ŷi−Δ/2

N(yi; 0, λi)dyi (5)

ŝ = Uŷ + μ (6)

3. RD RELATIONS AND NEW ESTIMATION CRITERION

In this section we first provide the RD relations (Sec. 3.1) that we
have already introduced in the partial case of AR model in [6].
Then, we introduce the new model estimation criterion (Sec. 3.2),
for which we give a practical optimization method in its general
form (Sec. 3.3) and in the partial case of gain estimation (Sec. 3.4).

We consider a sequence of source vectors s = {sn}N
n=1 and we

assume that each vector sn is quantized as described in section 2
using a Gaussian model θn = {μn, Σn}. Thus, we have to deal
with a sequence of Gaussian models θ = {θn}N

n=1, called here-
after model, that must be transmitted as well to the decoder as a side
information 1. Note that such a formulation covers both the GMM-
based quantization [2, 3], where a mixture index is transmitted as
side information, and the AR model-based quantization [6], where
quantized model parameters are transmitted.

3.1. Rate-Distortion Relations

To study the optimal model-parameter estimation we first need a
practical expression for the RD relation. It can be shown that in both
the CR and CE cases and under HR theory assumptions the (aver-
age) rate R (in bits per vector) is related to the (average) distortion
D (per dimension) 2 as:

R = −k

2
log2 D + ψ(s, θ), (7)

1In this work we do not analyze the rate spend for model parameters trans-
mission, since we know from [13] that under HR theory assumptions the op-
timal rate for model transmission is fixed, i.e., independent of the total rate.

2In the CR case the rate R is constant and the distortion D is computed
on average, while in the CE case the rate R is computed on average and the
mean distortion D ≈ Δ2/12 is the same for each quantization cell [3].

where the term ψ(s, θ) is independent of the rate R and distortion
D, and depends only on data s and model θ.

In the CR case the term ψ(s, θ) is [6]:

ψCR(s, θ) =
k

2
log2

(
3(2π)2/3C

k

)
+

+
k

2
log2

1

N

N∑
n=1

[
k∏

l=1

λ
1
k
n,l

k∑
i=1

λ
− 1

3
n,i N(yn

i ; 0, λn,i)
− 2

3

]
, (8)

where Σn = UnΛnUT
n is the eigenvalue decomposition of the co-

variance matrix Σn, C = 1/12 is the coefficient of quantization of
a scalar quantizer, and yn = UT

n (sn − μn) is the mean-removed
decorrelated source vector sn.

In the CE case the term ψ(s, θ) can be represented as [6]:

ψCE(s, θ) =
k

2
log2 C − 1

N
log2

∏N

n=1
pSn(sn|θn), (9)

where pSn(·|θn) is the pdf of random vector Sn modeled by θn.

3.2. Proposed Model Estimation Criterion

We see from equation (7) that under HR theory assumptions the RD
relation (for both CR and CE cases) relating the rate and the loga-
rithm of distortion is a linear function with slope −k/2 and intercept
ψ(s, θ). Thus, to minimize the distortion D for any (high) rate R,
one must look for a model θ minimizing the term ψ(s, θ).

The ML criterion, which is usually used for model estimation
[2, 4], can be written as:

θML = arg max
θ

∏N

n=1
pSn(sn|θn), (10)

We see that the ML criterion is equivalent to minimizing the term
ψCE(s, θ) defined by equation (9), that is the MDL principle [10].
However, the ML criterion is, in general, not equivalent to the mini-
mization of the term ψCR(s, θ) defined by (8). Thus, in the CR case
we introduce the following new model estimation criterion, called
CR-MDL:

θCR MDL = arg min
θ

φ(s, θ), (11)

where φ(s, θ) is defined as:

φ(s, θ) = log
N∑

n=1

[
k∏

l=1

λ
1
k
n,l

k∑
i=1

exp

{
1

3

(yn
i )2

λn,i

}]
, (12)

and obtained by simplifying the term ψCR(s, θ) (removing an addi-
tive constant and multiplying by a positive constant) such that mini-
mizing φ(s, θ) is equivalent to minimizing ψCR(s, θ).

3.3. Practical Implementation by Newton’s Method

Unfortunately, even for the single Gaussian model considered and in
contrast to the ML criterion (10), the CR-MDL criterion (11) can-
not be solved in a closed form. Thus, for practical optimization of
criterion (11) we use Newton’s method [14], which consists of the
application of the iteration:

θm+1 = θm − γ [Hθφ(s, θm)]−1 ∇θφ(s, θm), (13)

where θm are the model parameters obtained on the m’th iteration,
γ is a small positive constant, and ∇θφ(s, θm) and Hθφ(s, θm) are
respectively the gradient (vector of first-order partial derivatives) and
the Hessian matrix (matrix of second-order partial derivatives) com-
puted for the model parameters θm.
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3.4. Partial Case of Gain Estimation

In this section we derive the Newton’s method (13) for gain es-
timation. We consider a Gaussian model θn = {μn, Σn} �
{μn, σ2

nΣan}, where σn is a scalar gain. Assuming that μn

and Σan are already estimated, our goal is to estimate the gains
σn (n = 1, . . . , N ) using the CR-MDL criterion (11). Let
Σan = UanΛanUT

an
be the eigenvalue decomposition of Σan .

Then the covariance matrix Σn is Σn = Uanσ2
nΛanUT

an
. It can be

shown that for gain estimation the maximization of the global term
φ(s, θ) defined by (12) is equivalent to independent maximization
over σn of the following terms:

φμn,Σan
(sn, σ2

n) = log σ2
n + log

k∑
i=1

exp

{
1

3

(yn
i )2

σ2
nλan,i

}
, (14)

where yn = UT
an

(sn − μn) is independent on σ2
n. The partial (first

and second) derivatives of the term φμn,Σan
(sn, σ2

n) with respect to
σn, needed for implementation of Newton’s method (Sec. 3.3), are:

∂

∂σn
φμn,Σan

(sn, σ2
n) = − 2g2

3σ3
ng0

+
2

σn
,

∂2

∂2σn
φμn,Σan

(sn, σ2
n) =

2[9σ2
ng0g2 + 2g0g4 − 2g2

2 ]

9σ6
ng2

0

− 2

σ2
n

,

with gl =
∑k

i=1

(
yn

i√
λan,i

)l

exp
{

1
3

(yn
i )2

σ2
nλan,i

}
(l = 0, 2, 4).

4. RESULTS

To evaluate the proposed CR-MDL criterion (11) for the case of gain
estimation (Sec. 3.4), and to compare it with conventional ML crite-
rion, we consider two speech-coding schemes.

4.1. Coding Schemes

4.1.1. AR model based scheme with KLT

The first scheme is a flexible coding scheme we recently reported
in [6]. This scheme is based on the AR model and the KLT (the
corresponding optimal adaptive transform). The scheme, referred to
as AR-KLT, is schematized in figure 1 (A). It is assumed that every
k-dimensional signal time block (frame) sn is described by a order-
p AR model consisting of an excitation variance σ2

n and of a set of
AR model coefficients an = {an,j}p

j=1. Thus, sn is modeled as

a realization of a multivariate Gaussian distribution N (0̄, Σn) with
zero mean 3 and the covariance matrix Σn = σ2

nΣan , where Σan is
a Toeplitz matrix, having as first column the autocovariance function
of a signal generated with the AR model An(z) = 1 + an,1z

−1 +
. . . + an,pz−p (see [13] for details).

In [6] the AR model coefficients an are estimated from several
fixed-length signal blocks (frames) in the ML sense, and then inter-
polated, while the variance σ2

n (or gain σn) is estimated from only
one frame in the ML sense. In this paper we study the only appli-
cation of the CR-MDL criterion for variance estimation, while the
AR model coefficients are always estimated in the ML sense. The
estimation of σ2

n with CR-MDL criterion (11) is achieved by mini-
mizing the term φ0̄,Σan

(sn, σ2
n) (see (14)). The gain estimation (ei-

ther in the ML sense or with the CR-MDL criterion) is represented
in figure 1 (A) by the “Gain estim.” block.

3In contrast to [6], we do not consider here the “ringing” (or zero impulse
response) subtraction. Rather, we consider the model used in [13].

KLT

EVD Gain 
estim.

Quant.Framing

AR 
estim.

Inverse 
transf.

Input 
signal

Encoded 
signal

MLT

Gain 
estim.

Quant. Inverse 
MLT

Input 
signal

Encoded 
signal

(B)

(A)

Fixed 
frequency 
weighting

Fig. 1. AR-KLT (A) and MLT-FFW (B) coding schemes.

The transformed vector yn is ssumed to be distributed as
N (0̄, σ2

nΛan) and is quantized (using CR or CE model-based quan-
tizer) as described in section 2. The encoded signal x̂ is obtained
from the quantized sequence of vectors {ŷn}n by applying the
corresponding inverse transforms (i.e., inverse KLT and frames
concatenation).

4.1.2. MLT based scheme with a fixed frequency weighting

The second coding scheme is based on a modulated lapped trans-
form (MLT), which is orthogonal, and a fixed (the same for every
frame) weighting in the transformed domain. We call this weighting
Fixed Frequency Weighting (FFW) and the coding scheme is referred
hereafter as MLT-FFW. This scheme, schematized in figure 1 (B), is
close in spirit to the AR-KLT coding scheme, except that: (i) the
orthogonal transform (MLT) is fixed, while in the AR-KLT scheme
UT

an
is adapted to the local signal statistics described by the predic-

tor coefficients an, (ii) the transformed coefficients weighting Λa

(see Fig. 1 (B)) is fixed, while in the AR-KLT the weighting Λan

is adapted to the local signal statistics. Thus, we expect that the
MLT-FFW scheme is less efficient than AR-KLT, since the statisti-
cal model employed is less adapted to the local signal behavior. The
detailed description of the MLT-FFW scheme is omitted here, since
it is very similar to the description of AR-KLT (see Fig. 1).

4.2. Simulations

For the experimental evaluation we used 10 narrow-band speech sig-
nals randomly selected from the TIMIT database evaluation set. For
AR-KLT we have chosen the frame length k = 40 (5 ms) and the
AR model order p = 10. For MLT-FFW the MLT was computed
with offset k = 80 (10 ms).

For both coding schemes we performed simulations in different
scenarios, and the results are shown in figure 2 and 3, respectively.
For each scenario we plotted the experimental results for a set of
rates (circles, triangles or squares) together with the HR theory pre-
dicted RD curves given by equation (7) (lines). The following three
scenarios were considered:

(i) CR quantization using gain estimated with the ML criterion
(10) (circles and dashed line on Fig. 2 and 3),

(ii) CR quantization using gain estimated with the CR-MDL cri-
terion (11) (triangles and solid line on Fig. 2 and 3),

(iii) CE quantization using gain estimated with the ML criterion,
which is optimal for the CE case (squares and dotted line).
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Fig. 2. AR-KLT scheme simulation results.

We see that for both coding schemes and for all tested scenarios the
experimental results approach the theoretical RD relation (7) asymp-
totically with increasing rate, which confirms the validity of our the-
oretical results. In the CR case the theoretical distortion improve-
ment obtained with the proposed CR-MDL criterion, as compared to
the ML criterion, (diff. between dashed and solid lines) is about 1 dB
for the AR-KLT scheme and about 43 dB for the MLT-FFW scheme.
In practice this improvement (diff. between circles and triangles) is
at least of 0.5 dB for all tested rates for AR-KLT and is about 43 dB
starting from the rate of 15 bits per sample for MLT-FFW.

A significant difference exists between improvements obtained
using proposed CR-MDL criterion for these two schemes. We
observed that while for AR-KLT the distribution of the KLT-
transformed and normalized vectors x (see Eq. (1)) is close to
Gaussian (due to the Gaussian assumption used for AR model esti-
mation), for MLT-FFW this distribution is close to Laplacian. We
conclude that the larger the mismatch between data distribution and
model distribution, the greater the improvement due to the proposed
optimal criterion, as compared to the ML criterion.

5. CONCLUSION AND FURTHER WORK

Our experimental study performed for two different coding schemes
shows that the CR-MDL criterion improves CR quantization perfor-
mance for both schemes. Moreover, we conclude from experimental
evidence that the larger the mismatch between the actual data distri-
bution and model distribution, the greater the performance improve-
ment. Thus, it is particularly worthwhile to use the proposed optimal
criterion instead of ML, when mismatch between data and model ex-
ists, which is usually the case in the real-world applications.

We have investigated the CR-MDL criterion for variance esti-
mation for the Gaussian model. As for further research, this crite-
rion can be applied for estimation of the remaining parameters in the
Gaussian case (i.e., mean vectors and full covariance matrices) and
it can be extended to other distributions (e.g., GGD).
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