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ABSTRACT
In this paper, we present a novel near-lossless compression scheme

for scalar-quantized source codec parameters. The scheme is com-

parable to a Turbo source coding approach and can inherently in-

corporate protection against transmission errors. We show that us-

ing the concept of EXIT charts and irregular codes, a linear pro-

gramming optimization problem can be formulated and the solution

of this problem leads to an irregular index assignment offering the

best possible compression given the considered system model and a

fixed channel quality. The performance of the compression scheme

is demonstrated by a simulation example.

Index Terms— Iterative Source-Channel Decoding, Irregular

Codes, Near-Lossless Source Coding, Turbo Source Coding

1. INTRODUCTION

With the discovery of Turbo codes, channel coding close to the Shan-

non limit has become possible with moderate computational com-

plexity. In the recent years, the Turbo principle of exchanging ex-

trinsic information between separate channel decoders has also been

adapted to other receiver components. To exploit the residual redun-

dancy in source codec parameters such as scale factors or predictor

coefficients for speech, audio, and video signals in a Turbo process,

iterative source-channel decoding (ISCD) has been proposed in [1],

[2] as a means to further improve the quality of soft decision source

decoding (SDSD) [3]. This residual redundancy occurs due to non-

ideal source encoding resulting from, e.g., delay or complexity con-

straints.

In [4] and [5], it has been shown that Turbo codes can also be

used as source encoders. Conventional entropy source encoders such

as Huffman codes or arithmetic codes are very sensitive to transmis-

sion errors while the Turbo source coding approach automatically

incorporates error protection and can adapt on the fly to changing

channel conditions by increasing or decreasing the amount of artifi-

cial redundancy introduced by the channel code.

In our contribution we introduce a novel concept for near-

lossless compression of scalar-quantized source codec parameters.

This concept uses a joint source-channel coding approach with ISCD

at the receiver, similar to the Turbo source coding principle. The

inner (channel) code of the transmitter is of rate r ≥ 1, such that the

system becomes capacity-achieving [6], [7]. If this inner (channel)

code is fixed, the outer code, i.e., the (redundant) index assignment

of the different parameters can be matched quite well to the inner

code using the principles of irregular codes [8], allowing a simple

optimization using EXIT charts [9]. The concept of irregularity has
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been successfully applied to the ISCD system [10] by modifying the

(redundant) index assignment, i.e., the assignment of bit patterns

to codebook indices, of a (scalar) quantizer to get so-called irreg-

ular index assignments (IIA). These irregular index assignments

extend the concept of redundant index assignments [11]. In this

contribution, we show that the optimization of the irregular index

assignments can be modified such that the compression ratio is max-

imized, leading to an efficient, flexible compression system which

can easily adapt to varying channel conditions.

2. SYSTEM MODEL

In Fig. 1 the baseband model of the considered ISCD system is

depicted. At time instant t a source encoder generates a frame

ut = (u1,t, . . . , uKS ,t) of KS unquantized source codec parame-

ters uκ with κ ∈ {1, . . . , KS} denoting the position in the frame.

Each value uκ is individually mapped to a quantizer reproduction

level ūκ, with ūκ ∈ U = {ū(1), . . . , ū(Q)}. The set U denotes the

quantizer codebook with a total number of |U| = Q codebook en-

tries. In this paper, we restrict Q to take only values which are

powers of 2, i.e., Q = 2M , with M ∈ N \ {0}. A unique bit pat-

tern xκ ∈ Xκ = {x
(1)
κ , . . . ,x

(Q)
κ } of M∗

κ bits (i.e., Xκ ⊆ F
M∗

κ

2 ,

F = {0; 1}), with M∗

κ ≥ log2 Q = M , is assigned to each quan-

tizer level ūκ according to the index assignment Γκ(ū(i)) = x(i),

i = 1, . . . , Q. Note that the index assignment can differ from pa-

rameter to parameter. For notational convenience we omit the time

index t if the meaning of the equation is non-ambiguous.

The single bits of a bit pattern xκ are indicated by xκ(m),

m ∈ {1, . . . , M∗

κ}. If M∗

κ > log2 Q = M , the index assignment

Γκ is called redundant index assignment as it introduces redun-

dancy: More bits than actually necessary are spent to represent a

quantizer reproduction level. The index assignment can be consid-
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ered to be the composite function Γκ(ū) = ΓR
κ(ΓNR(ū)). First, the

function ΓNR performs a non-redundant mapping of the Q quantizer

reproduction levels to patterns consisting of M bits. Second, the

function ΓR
κ can be regarded as a (potentially non-linear) block code

of rate rIA
κ = (log2 Q)/M∗

κ = M/M∗

κ . The concept of non-linear

block codes employed as redundant index assignments has been

successfully utilized for the robust transmission of source parame-

ters in, e.g., [11]. After the index assignment, KS bit patterns are

grouped to a frame of bit patterns x = (x1, . . . ,xKS
) consisting of

NX
.
=

PKS

κ′=1 M∗

κ′

.
= KS · M

∗

bits. The overall rate of the index

assignment is thus

rIA .
=

KS · M
KSP
κ=1

M∗
κ

=
M

M
∗

, (1)

with M
∗

the average number of bits per parameter after index as-

signment. The frame x of bits is re-arranged by a bit interleaver π in

a deterministic, pseudo-random like manner. The interleaved frame

with KS · M
∗

bits is denoted as x̆.

For channel encoding of a frame x̆, we use a recursive convo-

lutional code of memory J and of rate rCC. In general, any channel

code can be used as long as the respective decoder is able to provide

the required extrinsic reliabilities. For the termination of the convo-

lutional code, J tail bits are appended to x̆. The encoded frame of

length NY
.
= 1

rCC (KS · M
∗

+ J) is denoted by y. The bits yk of

y are indexed by k ∈ {1, . . . , NY }. According to [6], a necessary

condition for a serially concatenated system to be capacity achieving

is an inner component with code rate rinner ≥ 1. This means that the

channel code should be of rate rCC ≥ 1, which can be achieved, e.g.,

by puncturing the output of the channel encoder.

Prior to transmission over the channel, the encoded bits yk are

mapped to bipolar values ÿk forming a sequence ÿ ∈ {±1}NY .

On the channel, the modulation symbols ÿk (with symbol energy

Es = 1) are subject to additive white Gaussian noise (AWGN) with

known power spectral density σ2
n = N0/2.

The received symbols zk are transformed to L-values [12] prior

to being evaluated in a Turbo process which exchanges extrinsic re-

liabilities between channel decoder (CD) and soft decision source

decoder (SDSD). The channel decoder used in this paper is based on

the MAP algorithm [13]. For the equations of the SDSD, we refer to

the literature, e.g., [14].

3. NEAR-LOSSLESS SOURCE CODING USING

IRREGULAR INDEX ASSIGNMENTS

It has been shown in, e.g., [4] and [5], that Turbo codes can be ef-

ficiently used as source codes, realizing a near-lossless compres-

sion scheme. Near-lossless means that the perfect reconstruction

is not guaranteed. Classical entropy coding compression schemes

like Huffman or arithmetic codes are able to achieve high compres-

sion ratios with moderate computational complexity, however, in the

presence of channel noise, severe error propagation and synchro-

nization losses are possible. Soft decision source decoding and iter-

ative source-channel decoding can also be applied to entropy codes

[15], with increased computational complexity however. It has been

shown in [7] that with lower computational complexity at the re-

ceiver, a system utilizing fixed-length codes can achieve comparable

results (in terms of reconstruction quality and symbol error rate) to a

system with variable-length codes, in the case that channel noise is

present.

The ISCD system using redundant index assignments introduced

in Section 2 is used in this paper for realizing a near-lossless source

coding system. In this case, the convolutional code is a rate rCC > 1
code obtained by puncturing a rate < 1 code and the index assign-

ment has to be optimized such that a minimum number of transmit-

ted bits NY = (NX + J) · 1
rCC results.

Thus, the task of the source coder is to find an index assign-

ment which minimizes the number of transmitted bits and allows

near-lossless decoding of the parameters at the receiver/decoder. The

approach presented here is based on the concept of irregular index

assignments [10] which extends the concept of irregular codes to

the source coder. Irregular codes, originally proposed for convolu-

tional codes [8], use several component codes of different rates in

one block to obtain an outer code with overall rate router. With this

concept, capacity achieving codes can be easily found. The principle

of irregular codes is based on the fact that the EXIT characteristic of

the resulting code corresponds to the weighted sum of the compo-

nent codes’ characteristics. An optimization algorithm that searches

for optimum weights in order to get an (almost) perfectly matching

characteristic can be formulated [8].

Irregular index assignments (IIA), introduced in [10], are an ex-

tension of the irregular codes’ concept. As stated in Section 2, the

index assignment for the parameter uκ comprises a block code ΓR
κ

of rate rIA
κ = (log2 Q)/M∗

κ = M/M∗

κ . Instead of using the same

amount of bit redundancy M∗

κ = M
∗

for each parameter in order to

achieve an overall rate M/M
∗

outer encoding, we use the concept

of irregular codes and vary M∗

κ for each parameter while keeping

M
∗

constant. This allows us to optimize the index assignments and

to get an SDSD EXIT characteristic which matches the channel de-

coder characteristic considerably well.

In order to perform source coding, the optimization goal is a

different one as in [8] and [10]. The index assignments which have

a high rate (and thus a small number of output bits) shall be pre-

ferred. Therefore, the goal of the optimization is to find an EXIT

characteristic which results in the smallest number of transmitted

bits with the constraint that an open decoding tunnel exists. There-

fore, the weighting factors w = (w1, . . . , wL)T of the L different

utilized index assignments need to be chosen such that the weights

w� corresponding to high-rate index assignments are preferred.

The optimization goal is in fact to minimize the number of bits

NX = KSM
∗

after index assignment. The optimized weights w

indicate the proportions of bits after index assignment and from

these, the different KS,�, i.e., the number of parameters encoded

with the �’th index assignment, can be determined. The number of

resulting output bits after encoding a portion of KS,� parameters

with an index assignment of rate rIA
� amounts to

KS,�
M

rIA
�

= w�NX (2)

and it holds
P

� KS,�
!
= KS . Rewriting (2) to

NXw�r
IA
� = MKS,� (3)

and summing up over all L different index assignments leads to

NX

LX
�=1

rIA
� w� = M

LX
�=1

KS,� (4)

which can be rewritten as

NXr
T
w = MKS ⇒ NX =

MKS

rT w
, (5)

with r = (rIA
1 , . . . , rIA

L )T . As KS and M are constant, minimizing

the number of total bits NX corresponds to maximizing rT w. This

means that the task of optimizing the irregular index assignment such

that decoding is still possible and resulting with a minimum number

of output bits NX can be formulated as a linear programming opti-

mization problem with

wopt = arg max
w

r
T
w = arg min

w

(−r
T
w) (6)
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subject to

C · w > d + t
′

(7)

0 ≤ w� ≤ 1 ∀� ∈ {1, . . . , L} (8)

LX
�=1

w� = 1 , (9)

with C
.
= (c1, . . . , cL) composed of c�

.
= (c�,1, . . . , c�,P )T , which

consists of P sample points of the characteristic CSDSD,� of a specific

index assignment ΓR
� . The vector d consists of P sample points of

the inverse channel code EXIT characteristic C−1
CD , measured at the

channel quality for which the system is optimized. The constraint (7)

ensures that an open decoding tunnel is present. In (7), the vector t′

denotes an offset vector which is chosen such that a larger open de-

coding tunnel is present, leading to better convergence properties at

the receiver. In fact, the constraint Cw > d would only guarantee

an infinitely small decoding tunnel which could only be exploited

with an infinite block size (KS → ∞). The constraints (8) and (9)

ensure that all the weighting factors w� are in the range 0 ≤ w� ≤ 1
and that

P
� w� = 1. The solution to this linear programming opti-

mization problem can be easily found using numerical methods (see,

e.g., [16]).

Using the factors wopt resulting from the optimization (6), the

number of parameters KS,� which are encoded with the index as-

signment of rate rIA
� can be determined. An equation system with

L + 1 unknowns, consisting of the L different equations (2) (� =

1 . . . , L) and
P

� KS,�
!
= KS can be formulated0

BBBBBBBB@

w1 − M
rIA
1

0 · · · 0

w2 0 − M
rIA
2

. . .
...

...
...

. . .
. . . 0

wL 0 · · · 0 − M
rIA

L

0 1 · · · · · · 1

1
CCCCCCCCA

| {z }
.
= F

·

0
BBB@

NX

KS,1

...

KS,L

1
CCCA =

0
BBB@

0
...

0
KS

1
CCCA . (10)

The solution to (10) is given by„
NX

K

«
= F

−1 ·

„
0L

KS

«
. (11)

with K = (KS,1, . . . , KS,L)T and 0L denoting the length L
all-zeros column vector. The fractions KS,� as well NX can be

determined by (numerically) solving (11). Note that due to its

special structure, F has full rank and can be inverted. The value

NX = KSM
∗

can also be determined using (5).

4. SIMULATION EXAMPLE

We show the concept of near-lossless source coding using irregu-

lar index assignments by a simulation example. A block consisting

of KS = 10000 parameters resulting from a Gaussian distributed

autoregressive source of first order (Gauss-Markov source) shall be

compressed. The parameters show intra-frame correlation (i.e., the

parameters in one frame are correlated) with correlation coefficient

ρ = 0.9. The parameters are quantized using a Q = 16 level Lloyd-

Max codebook U. The index assignments BC16
5 , BC16

6 , . . . , BC16
15

(with BC
Q
M∗ ) are generated using the design guidelines and the gen-

erator matrix given in [10].

For demonstrating the concept, we utilize a rate rCC
orig = 1

2
recur-

sive systematic convolutional code of memory J = 3 with generator
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Fig. 2. EXIT chart analysis of the irregular index assignments for

source coding

polynomials GCC
orig(D) =

“
1, 1

1+D+D2+D3

”
which is punctured to

an overall rate rCC = 2 code by using the puncturing matrix

P =

„
1 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 1 0 1 0

«
. (12)

The EXIT characteristic CCD of the rate rCC = 2 convolu-

tional code for perfect channel conditions (i.e., Es/N0 → ∞)

as well as the SDSD EXIT charts of the different index assign-

ments of rates 4/15 → 4/5 are depicted in Fig. 2. The irregular

characteristic CIIA,A
SDSD resulting from the optimization (6) is also de-

picted in Fig. 2. A quite narrow open decoding tunnel is present

which means that quite a large number of iterations have to be per-

formed at the receiver. The numerical result of the optimization

is given in Table 1 (Setup A): only the rate 4/5 and 4/6 index

assignments are utilized. For KS = 10000, this leads to a total

number of NX = 55285 bits after index assignment, i.e., a to-

tal number of 27644 bits after convolutional coding (≈ 2.76 bit

per parameter). The upper limit of the reachable compression is

given by the conditional entropy H(Ūκ|Ūκ−1) which in this setup

amounts to H(Ūκ|Ūκ−1) = 2.62 bit per parameter leading to a

minimal number of 26202 bits per block. The entropy can only

be achieved if the decoding tunnel becomes infinitely narrow, how-

ever, this is not possible due to the channel decoder characteristic

(I
[ext]
CD (I

[apri]
CD = 0) ≈ 0.1). The utilization of a different channel

code with a smaller value of I
[ext]
CD (I

[apri]
CD = 0) might lead to better

compression properties.

However, the decoding tunnel might be too narrow for the de-

coding because of the finite block size. By selecting an offset vector

t′ > 0L a broader decoding tunnel can be found. The results of the

optimization for this case are also given in Table 1 (Setup B).

The main advantage of the proposed system is the high flexibil-

ity. If the system shall be designed such that channel induced errors

may occur, the parameter settings for the irregular index assignment

can be easily adapted. As an example, we assume that the chan-

nel quality can drop down to Es/N0 = 0 dB. In this case, the EXIT

characteristic of the channel decoder changes and an intersection oc-

curs. The EXIT characteristic of the rate rCC = 2 convolutional code

for Es/N0 = 0 dB is also depicted in Fig. 2 and denoted by C′

CD. Us-

ing this characteristic, the linear programming optimization (6) can

be carried out and a new optimized EXIT curve CIIA,C
SDSD results. Of

course, as the channel quality becomes worse, additional artificial
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• Setup A (Es/N0 → ∞, t′ = 0L)

Rate rIA
� Γ� w� KS,� KS,� ·

M
rIA

�

4/5 BC16
5 0.4265 K

(4/5)
S = 4715 23575

4/6 BC16
6 0.5735 K

(4/6)
S = 5285 31710P

= 1
P

= NX = 55285

• Setup B (Es/N0 → ∞, t′ > 0L)

Rate rIA
� Γ� w� KS,� KS,� ·

M
rIA

�

4/5 BC16
5 0.2688 K

(4/5)
S = 3061 15305

4/6 BC16
6 0.7312 K

(4/6)
S = 6939 41634P

= 1
P

= NX = 56939

• Setup C (Es/N0 = 0 dB, t′ = 0L)

Rate rIA
� Γ� w� KS,� KS,� ·

M
rIA

�

4/5 BC16
5 0.1578 K

(4/5)
S = 2451 12255

4/6 BC16
6 0.0650 K

(4/6)
S = 842 5052

4/9 BC16
9 0.7772 K

(4/9)
S = 6707 60363P

= 1
P

= NX = 77670
Table 1. Results of the irregular index assignment for near-lossless

source coding

redundancy has to be introduced resulting in a larger block size NX

after index assignment. The result of the optimization is also given

in Table 1 (Setup C). This irregular index assignment results in a

total number of NX = 77670 bits, i.e., 38837 bits after channel

coding.

Figure 3 depicts the parameter SNR after reconstruction as a

function of the performed iterations. For all three setups, a perfect

channel quality (Es/N0 → ∞) has been studied in the example. Ad-

ditionally, for Setup C, a channel quality of Es/N0 = 0 dB has been

utilized. The more bits are utilized (and thus the larger the decoding

tunnel is) the faster the convergence to the maximum parameter SNR

of ≈ 20 dB (due to the quantization with codebook U). For Setup A,

it can be observed that even with 90 iterations we can only approach

the maximum attainable parameter SNR. This is due to the very nar-

row decoding tunnel caused by t′ = 0L and the finite block size

of KS = 10000 parameters. In Setup B, with a slightly wider de-

coding tunnel (t′ > 0L with max� t′� = 0.01) a faster convergence

can be observed and the maximum parameter SNR is reached. Setup
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Fig. 3. Reconstruction parameter SNR for the ISCD system employ-

ing irregular index assignments

C with Es/N0 = 0 dB shows a slower convergence than Setup A
because of the very narrow decoding tunnel visible in Fig. 2 (espe-

cially during the first iterations). For Setup C with Es/N0 → ∞ a

large decoding tunnel is open. This leads to a very fast convergence

(7 iterations) towards the maximum parameter SNR.

5. CONCLUSIONS

In this contribution we have shown that a joint source-channel cod-

ing approach with irregular index assignments and iterative decod-

ing can be effectively utilized for near-lossless Turbo source coding.

In a source coding setup, the number of transmitted bits shall be

minimized. Minimizing the number of bits leads to a linear pro-

gramming optimization problem which can be solved, resulting in

irregular index assignments for Turbo source coding. The advantage

of the proposed scheme is that it can easily cope with channel noise

and can be flexibly adapted to varying channel conditions by a se-

lection of different appropriate index assignments. The capabilities

and the flexibility of the proposed source coding scheme have been

demonstrated in a simulation example.

6. REFERENCES

[1] M. Adrat, P. Vary, and J. Spittka, “Iterative Source-Channel Decoder
Using Extrinsic Information from Softbit-Source Decoding,” in Proc.

of IEEE ICASSP, Salt Lake City, UT, USA, May 2001.
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