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ABSTRACT

We consider the distributed compression of two (binary mem-
oryless) correlated sources and propose a unique codec that
can reach any point in the Slepian-Wolf region. In a previ-
ous method based on channel codes, the decoder multiply the
compressed data by an inverse submatrix of the code. This
multiplication presents two drawbacks. First, if turbo codes
are used, the submatrix has no periodic structure s.t. the whole
inverse has to be stored and no fast implementation exists for
the multiplication. Second, this multiplication may lead to er-
ror propagation. In this paper, we propose a method that is
both robust and fast.
Index terms— Distributed source coding, channel cod-

ing, linear block codes, turbo codes.

1. INTRODUCTION
Distributed source coding (DSC) refers to the problem of dis-
joint compression of correlated sources. It was funded in
1973 by the Slepian-Wolf (SW) theorem [1]. In the follow-
ing, lossless compression of two correlated binary sources is
considered.
It has long been known, thanks to Shannon’s theorem, that

cooperation between the sources leads to a minimum achiev-
able rate amounting to the joint entropy. If cooperation is
not allowed between the two sources, the Slepian-Wolf theo-
rem states the surprising result that the joint entropy is still the
minimum achievable rate, as long as each single rate is greater
than the conditional entropy, and joint decoding is performed.
The set of achievable rates is called the SW region.
This result is particularly valuable in the domain of wire-

less sensor networks [2] where neighboring and thus highly
correlated sensors do not need to communicate to reach op-
timal compression rates. Moreover, to adapt to channel con-
dition variations between the sources and the receiver [3], the
encoders should dynamically vary their compression rates in
order to reach any point of the SW region. It is the construc-
tion of such a rate adaptive code that we consider in this paper.
In [4], Wyner showed the optimality of binary linear codes

to reach a corner point of the SW region when two binary
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memoryless sources have to be compressed. This scheme is
usually referred to as the syndrome approach. Therefore, first
practical solutions were based on channel codes [5, 6]. Here
we consider the syndrome approach proposed in [7] that can
deal with any convolutional code (not only systematic as in
[5]) and any turbo code. We propose a construction that al-
lows to reach any point of the SW region based on the scheme
[8, 9], where LDPC codes were used. If turbo codes are con-
sidered, there is no fast implementation for the scheme [8, 9]
and propagation errors occur. In this contribution, we propose
a robust and also fast non asymmetric SW scheme.

2. THE DSC PROBLEM
Let X and Y be two correlated sources having realizations x
and y. Rx and Ry are their respective compression rates. To
recover both sources in the SW setup, the compression rates
must satisfy: Rx ≥ H(X|Y ), Ry ≥ H(Y |X) andRx+Ry ≥
H(X,Y ). These inequalities define the so called SW region
depicted in Fig. 1.

Fig. 1. The Slepian-Wolf rate region.
Asymmetric DSC corresponds to a SW codec that operates
at a corner point of the SW region. In [4], Wyner showed
that binary linear codes can achieve these corner points with a
scheme called the syndrome approach. More precisely, con-
sider an (n, k) channel code C defined by its (n − k) × n

parity check matrix H: C =
{
x : xHT = 0

}
. This code de-

fines a partition of the n-length sequences into cosets, where
all sequences in a coset share the same syndrome: Cs ={
x : xHT = s

}
. To encode x, the encoder transmits its syn-

drome sx = xHT achieving a compression ratio of n : (n −
k). At the decoder, y have been sent at its entropy rateH(Y )
and can therefore be retrieved. Then, the sequence x is found
as the closest sequence to y with syndrome sx. Since the
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search is performed in any coset and not only the set of code-
words (with syndrome 0), classical channel decoder have to
be adapted. This adaptation has been proposed in [5, 10] for
systematic convolutional codes and systematic turbo codes
and for LDPC codes in [6]. We consider the decoder in [7]
that can deal with any convolutional and turbo code (not only
systematic).
Non asymmetric DSC is the problem we address in this pa-
per. It aims at achieving any point between the two corner
points of the SW region (see Fig. 1). Two non asymmetric
schemes have been proposed: in [2, 11], the asymmetric code
is partitioned into two subcodes, one for each source, whereas
the original code is used in [8, 9]. In both approaches, first
the difference pattern between the two sources z = x ⊕ y

is estimated, then the sources are recovered. In this two step
procedure, error propagation can occur if the error pattern z

is not correctly estimated.

3. NON ASYMMETRIC SW CODING
3.1. Principle
In this section, we review the general principle of non asym-
metric SW coding proposed in [8, 9] and applied to LDPC
codes. This scheme uses the (n − k) × n parity-check ma-
trix H defined above and a design parameter k′ ∈ [0, k],
that allows to vary the compression rates (Rx, Ry). The two
correlated binary sequences of length n, x and y, are split
into three parts. More precisely, x = (xk′

1 ,xk
k′+1

,xn
k+1

) and
y = (xk′

1 ,yk
k′+1

,yn
k+1

). The syndromes sx = xHT and
sy = yHT , of length (n − k), are computed for both se-
quences and transmitted to the decoder. In addition, the k′

first bits of X , xk′

1 , and the k − k′ next bits for the source Y ,
yk

k′+1
, are transmitted as systematic bits. The total rate for the

sequences x and y of length n is respectively n − k + k′ and
n−k′ bits. The structure of the coders is depicted in Figure 2.

Fig. 2. The non asymmetric coders in the syndrome approach.

At the receiver, the decoder first estimates the error pattern
z = x ⊕ y. By definition, the MAP estimate of the error
pattern (based on the knowledge of sx and sy) is the minimum
weight vector with syndrome sz = sx ⊕ sy . In other words, it
is the closest sequence to the zero sequence 0, with syndrome
sz . It can thus be estimated with any asymmetric SW decoder
as shown in Figure 3.
Once the error pattern is found, the subsequences of in-

formation bits xk
k′+1

and yk′

1 can be retrieved from the error
pattern z = x ⊕ y as:

x̂k
k′+1 = yk

k′+1 ⊕ ẑk
k′+1 and ŷk′

1 = xk′

1 ⊕ ẑk′

1 . (1)

Fig. 3. Non-asymmetric decoder: estimation of the error pattern z = x⊕y.

Subsequences of n − k bits, i.e. xn
k+1

and yn
k+1
, remain to

be computed for both sequences. Let us assume that H =
(A B), where B is an invertible square matrix of dimension
(n−k)×(n−k). Such a decomposition (up to a permutation
on the columns) exists since H has rank n − k. Thus, sx =
xHT = x(A B)T = xk

1A
T ⊕ xn

k+1
BT , and the remaining

n − k unknown bits of the sequence x (and similarly for the
sequence y) can be computed as

x̂n
k+1 = (sx ⊕ x̂k

1A
T ) B−1 T , (2)

where B−1 denotes the inverse of the matrix B.
This scheme has two drawbacks. First, if turbo or LDPC

codes are used, the inverse submatrix of the code,B−1, has no
periodic structure s.t. the whole matrix B−1 has to be stored,
and the complexity of the multiplication grows quadratically
with the blocklength. Second, from the construction of the
decoder, we notice that the three parts of the estimated se-
quences x̂ and ŷ have different characteristics. Since the sub-
sequences xk′

1 and yk
k′+1

are available at the decoder, their
estimates have no error. The next subsequences (xk

k′+1
and

yk′

1 ) are recovered thanks to the estimated error pattern (1),
therefore their estimates have the same BER as the estimated
error pattern. The most critical issue that we address in this
paper is the BER of the n−k unknown bits of the sequence x
(and similarly for y). The multiplication by the matrix B−1

in (2) may enhance the number of errors. We call this effect
the error propagation phenomena. In the following, we show
this effect for the convolutional and turbo codes and propose
solutions to limit it. Moreover, we will show that this robust
scheme is also fast in the sense that the complexity grows only
linearly with the blocklength.

3.2. Non asymmetric SW coding using convolutional
codes
In the following, we consider a (n, k) convolutional code with
N periods. First, we note that the unknown positions in the
vector x are design parameters. More precisely, these po-
sitions (or equivalently the columns of the matrix H to be
extracted in order to build the matrixB) are chosen at the en-
coder and known at the decoder. Therefore, the estimation of
the subsequences xn

k+1
and yn

k+1
is an easier task than chan-

nel decoding over a binary erasure channel (BEC), since, in
our case, the erased positions are known at the encoder.
Figure 4 shows the BER of the error pattern z (continuous

line) and its effect on the estimation of the source sequence x.
Performance is shown for a convolutional code. We consider
three possible estimators.
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Fig. 4. Error propagation in the estimation of the source X . The convo-
lutional code is defined by its parity check matrix H =

(
11 15 06

15 12 17

)
and is

punctured over a period of four trellis sections in order to get a 2 : 1 com-
pression rate for the source.

First, we use the original method (2). The dotted curve rep-
resents the BER, when equation (2) is performed with an ar-
bitrary invertible matrix B. As expected, the BER has been
drastically increased. Since the linear code chosen is a con-
volutional code, its parity check matrix has a natural periodic
structure. Therefore, there exists a sliding window implemen-
tation for computing (2), which reduces the required storage
(a whole matrix B−1 does not need to be stored).
In a second method, we optimize the matrix B in order

to limit the error propagation. More precisely, we choose a
matrix B which inverse is as sparse as possible. Fig. 4 shows
that if the matrix is chosen to be as sparse as possible, then
the BER can be lowered from the dotted curve to the dashed
curve. Here, an exhaustive search over all possibleBmatrices
has been performed.
Finally, we use a modified ML decoder to solve equation

(2). Let us first assume that the error pattern z is perfectly
known at the decoder. Therefore the k first bits of x, xk

1 ,
are also known. If the matrix B is invertible, the original
source sequence is the unique sequence of the coset Csx

that
has the first k bits equal to xk

1 (recall that the syndrome sx is
also known at the decoder). Therefore, one can build a ML
decoder (Viterbi for the convolutional decoder) that performs
a search in the coset Csx

and that is matched to a channel
combining a perfect channel (for xk

1) and an erasure channel
(for xn

k+1
). The effect of knowing some bits perfectly is that

some paths are deleted in the trellis, and if B is invertible,
there is even a single path that remains.

Fig. 5. Equivalent channels for the decoding of the sources.
We now go back to our original problem of error propaga-

tion. If the difference pattern z contains errors, the decoder is

matched to a channel combining a perfect channel (for xk′

1 ),
a BSC (for x̂k

k′+1
with cross over probability the BER of z)

and an erasure channel (for xn
k+1
) as shown in Fig. 5. Fig. 4

shows that the BER for the estimation of x is further reduced
(dot-dash curve). Interestingly, with this decoder the BER of
x remains almost the same as that of z. The proposed can
therefore limit the error propagation. Moreover, the complex-
ity of the proposed algorithm grows linearly with the block-
length Nn.

3.3. Non asymmetric SW coding using turbo codes
In this section, we use a turbo code composed of two identical
(n, k) convolutional codes (of period N ) separated by a ran-
dom interleaver of size Nn, as shown in Fig. 6. Each source
transmits two syndromes of length (n−k)N each (one of the
source: sx1 (sy1), and one of the interleaved version of the
source: sx2 (sy2)).

Fig. 6. The turbo-syndrome scheme for non asymmetric coding of two
sources: the encoder and the estimation of the error pattern.

As presented in Section 3.1, the first step consists in es-
timating the error pattern z. Therefore, we compute the two
syndromes of z: szi = sxi⊕syi, i ∈ {1, 2} and search for the
closest sequence to 0 in Csz1

∩ Csz2
. To perform this search,

we use the modified BCJR algorithm [7] for each convolu-
tional decoding, that passes soft extrinsic messages between
the convolutional decoders as depicted in Fig. 6. The turbo
decoding stops when the estimated ẑ matches the two syn-
dromes sz1, sz2 or when a maximum number of turbo decod-
ing loops is reached.
Once ẑ is estimated, the source sequences x and y have to

be recovered as in (2). The first method considered here con-
sist in computing the parity check matrix of the turbo code.
Let H1 be the N(n − k) × Nn parity check matrix defining
the first convolutional code. The parity check matrix of the
second code H2 results from a permutation of the columns
ofH1. Thus, the turbo code is completely determined by the
2N(n − k) × Nn matrixHT = (HT

1 HT
2 ). Given a decom-

position H = (A B) with an invertible B, we apply (2) to
estimate the sources X and Y . Due to the presence of the
interleaver, there exists no sliding window implementation of
this estimator as for convolutional codes (unless a constrained
interleaver is designed which may degrade the performance of
the turbo code). Moreover, as expected, the error propagates
drastically. Therefore, we propose a novel method that can
both reduce the error propagations and have a sliding window
implementation (to have an estimator complexity that grows
linearly with N ).
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Fig. 7. Error propagation and estimation of the sourceX . Each constituent
code of the turbo code is defined byH =

(
11 15 06

15 12 17

)
and is punctured over

a period of 4 trellis sections in order to get a 2:1 compression rate. The
blocksize is 2004.

The estimation of the remaining subsequences proposed
for convolutional codes rely on the hypothesis that an exact
MAP decoding can be used. However, for turbo codes such a
decoder is of great complexity and we consider here the usual
suboptimal MAP decoder (see Fig. 8). As for the case of con-
volutional codes, we first assume that the z pattern has been
perfectly estimated. Each constituent decoder has to solve a
system of N(n − k) equations with 2N(n − k) unknowns
and the solution is “at best” a vector subspace of dimension
N(n− k). To insure that the dimension of each solution sub-
space is only N(n − k), the matrices B11 and B22 must be
invertible, where these matrices result from the decomposi-

tion of B into B =

(
B11 B12

B21 B22

)
. Finally, to insure that the

intersection of the two solution subspaces reduces to a single
sequence the whole matrix B has also to be invertible.
These three new constraints (existence of B−1,B−1

11 and
B−1

22 ) are enough if the two decoders communicate their solu-
tion subspaces to each other. However, for a low complexity
decoder implementation, we rely on a bitMAP decoding pro-
cedure that may loose some information on the solution sub-
space. More precisely, no information is lost if all the erased
bits of a solution subspace are located in the same position
or in other words if a solution subspace is generated by co-
ordinate vectors (the i-th coordinate vector has a single 1 at
the i-th position and 0 everywhere else ei = (0...010...0)). If
such a condition is not satisfied, then the turbo decoder has to
be helped by introducing some known bits at the decoder.

Fig. 8. The turbo-syndrome scheme for the non asymmetric decoding of
one source.

Figure 8 shows the BER of the error pattern z (continuous
line) and its effect on the estimation of the source sequence

x. The turbo code considered has a global compression rate
of 2:1. However, some unknown bits of the source are di-
rectly sent to the decoder (for both estimators of the source
X). Therefore, the global compression rate (and thus the SW
bound in the figure) increases to 0.54. First, the matrix inver-
sion technique (2) is used and the dashed curve shows that the
BER has been increased. Finally, the source X is estimated
with the soft decoder described above and the dot-dash curve
shows that the BER has been reduced. Interestingly, our ro-
bust scheme is also fast since the complexity grows linearly
with the interleaversize Nn.

4. CONCLUSION
We have proposed a non asymmetric SW codec, for two cor-
related binary memoryless sources, constructed with convo-
lutional or turbo codes. First we have shown the existence
of propagation error between the estimated difference pattern
(difference of the two sources) and the reconstruction of the
sources. Then, we have proposed a robust scheme which lim-
its the error propagation effect. Finally, the proposed scheme
has a natural sliding window implementation s.t. the com-
plexity grows linearly with the blocksize.
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