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ABSTRACT

The problem of designing simple and energy-efficient nonlinear dis-
tributed source–channel codes is considered. By demonstrating sim-
ilarities between this problem and the problem of bandwidth expan-
sion, a structure for source–channel codes is presented and analyzed.
Based on this analysis an understanding about desirable properties
for such a system is gained and used to produce an explicit source–
channel code which is then analyzed and simulated. It is shown that
the code has a substantial gain compared to a linear source–channel
code.

Index Terms— Source coding, quantization, channel coding,
correlation.

1. INTRODUCTION

Wireless sensor networks are expected to play an important role
in tomorrow’s sensing systems. One interesting property in these
networks is the potential correlation between different sensor mea-
surements which motivates distributed source and channel coding
of correlated sources. Most existing literature about how to design
practical codes for this problem focus on the case with two sensors
and nonlinear source–channel codes, see e.g. [1]. However, in gen-
eral these approaches are nontrivial to implement for a large number
of sensors which has motivated research on linear source-channel
codes, see e.g. [2], implementable also for a large number of sen-
sors. The drawback with the linear approach is that it is, in general,
suboptimal, see e.g. [3, 4]. Hence, it should be possible to achieve a
better performance by allowing nonlinear operations. In this paper,
extended in [5], we consider an approach for analog nonlinear dis-
tributed source–channel coding, with better performance than linear
codes, which can be implemented in the case of a large number of
sources.

2. PROBLEM FORMULATION

Consider the problem illustrated in Figure 1. An analog, i.e. continuous-
valued, random source sample X with variance σ2

x is observed by k
separate encoders (sensors) through the noisy observations

xi = x + wi, 1 ≤ i ≤ k (1)

where the Wi’s are independent identically distributed (i.i.d.) zero
mean Gaussian with variance σ2

w. Each encoder encodes its own
observation xi by performing an analog mapping, that is si : R →
R, under the power constraint

E[si(Xi)
2] ≤ P. (2)
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Fig. 1. Structure of the system.

The encoded values,

s(x) � (s1(x1), s2(x2), . . . , sk(xk))T
(3)

are transmitted over k orthogonal AWGN channels, created by using
e.g. TDMA, FDMA or CDMA, and the decoder estimates x based
on the received values

r = s(x) + n (4)

where N is i.i.d. memoryless Gaussian distributed with covariance
matrix σ2

nI . Hence, the decoding is performed as

x̂ = x̂(r) (5)

and the objective is to minimize the expected mean square error

(MSE) E[(X − X̂)2]. The main focus of this paper is on how to
design s(x).

3. DISCUSSION AND PROPOSED SCHEME

We will in Subsections 3.A–B discuss two important special cases
of the problem described in Figure 1. Understanding for these spe-
cial cases leads to insight about how to design the encoding function
s(x) for the general case. Based on this insight we present and ana-
lyze a structure for s(x) in Subsections 3.C–D. Finally, based on the
derived results we propose an explicit scheme for s(x) in Subsection
3.E.

3.1. σ2
w > 0 and σ2

n → 0

For the case when σ2
w > 0 and σ2

n → 0 the AWGN channels are ap-
proaching ideal, i.e. noiseless, channels and ri will approach si(xi).
This means that given the linear encoding strategy,

si(xi) =

�
P

σ2
x + σ2

w

xi, 1 ≤ i ≤ k, (6)
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Fig. 2. x1 illustrates a ’small’ decoding error and x2 illustrates a

’large’ decoding error.

the decoder will get access to the noisy observations {xi}k
i=1 (since

the channel is close to perfect). Given these observations we could
theoretically perform the best possible estimation based on the noisy
observations as given by the Cramer–Rao lower bound, see e.g. [6].
It is clear that there will be no way to obtain a better performance,
since that would require better sensor observations, and we can
therefore conclude that the linear coding strategy described above is
approaching the optimal strategy when σ2

n → 0.

3.2. σ2
w = 0 and σ2

n > 0

In the case when σ2
w = 0 and σ2

n > 0 we will get xi = x ∀i
which we will write as s(x) = s(x). This problem is equivalent to
the problem often referred to as the bandwidth expansion problem,
see e.g. [7] and the references therein. (See also [8] for the con-
nection between distributed source–channel coding and bandwidth
compression.) It is well known for the bandwidth expansion prob-
lem that when the source is i.i.d. zero-mean Gaussian and k = 1,
linear encoding is optimal under the assumption that the decoder
knows the source and noise variances. However, when k > 1 this
is no longer true and nonlinear encoding can have superior perfor-
mance compared to linear encoding strategies, see e.g. [9]. One of
the reasons for this is that a linear encoding function s(x) only uses
a one dimensional subspace of the available channel space. More
efficient mappings would use a higher number of the available chan-
nel space dimensions. An example of this is illustrated in Figure 2
where k = 2 is assumed. By using nonlinear encoding functions, il-
lustrated by the solid ’S–shaped’ curve s(x), we are able to better fill
the channel space than when using linear encoding functions, repre-
sented by the dashed curve. As long as we decode to the right fold
of the curve, illustrated by sample x1 in the figure, a longer curve
essentially means a higher resolution when estimating x, i.e. a better
estimate. However, decreasing the SNR will at some point result in
that different folds of the curve will lie too close to each other and
the decoder will start making large decoding errors, illustrated by
sample x2 in the figure. Decreasing the SNR below this threshold
will therefore significantly deteriorate the performance.

3.3. Objective

Based on the intuition from these two special cases we can conclude
that for the problem considered in this paper, where both σ2

w > 0
and σ2

n > 0, good encoding functions s(x) should take both these
aspects into consideration. Our objective in this paper is to analyze

and design nonlinear encoding functions s(x) of the type illustrated
in Figure 2.

3.4. Analysis

In order to gain understanding for the use of nonlinear encoding
functions s(x) we make a performance analysis under the assump-
tions that σ2

w and σ2
n are small. We also assume, in this subsection,

that all encoding functions si(xi) are continuous and differentiable
and that the curve s(x) is appropriately designed such that no large
decoding errors occur under the assumed noise variances. Let us
start by studying a certain encoded observation x and the resulting
estimate x̂ = x + z, with z representing the estimation error. Un-
der the above assumptions, i.e. small noise variances, also z will be
small and hence

s(x̂) = s(x + z) ≈ s(x) + zs′(x). (7)

where

s′(x) � � d

dx
s1(x),

d

dx
s2(x), . . . ,

d

dx
sk(x) � T

. (8)

Now consider the decoder. It is well known that in order to min-
imize the MSE the decoder should be implemented as

x̂(r) = E[X|r]. (9)

This function will however, in general, be difficult to implement. We
will therefore consider the suboptimal maximum likelihood (ML)
decoder. Since σ2

w is small we get

s(x) ≈ s(x) + diag(s′(x))w (10)

which gives

r = s(x) + n ≈ s(x) + diag(s′(x))w + n. (11)

We approximate the ML decoder as

x̂(r) = arg max
x

p(r|x) ≈ arg min
x

‖s(x) − r‖2
(12)

where p(·|·) denotes the transition pdf from x to r. Hence, the de-
coding function corresponds to decoding r to the closest point on
the curve s(x̂). However, for small values of |x − x̂| the curve s(x̂)
is approximately linear and parallel to s′(x). This means that the
decoder will remove the noise contributions orthogonal to s′(x) and
we get

s(x̂) ≈ s(x) +
(diag(s′(x))w + n) · s′(x)

‖s′(x)‖
s′(x)

‖s′(x)‖ (13)

where the dot product describes the projection of the added noise
onto the vector s′(x). Expanding the dot product we get

(diag(s′(x))w + n) · s′(x)

= (diag(s′(x))w) · s′(x) + n · s′(x) � w + n (14)

where

W ∼ N (0, σ2
w

k�
i=1

s′i(x)4)

N ∼ N (0, σ2
n

k�
i=1

s′i(x)2).
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From (7) and (13) we identify

z ≈ w + n

‖s′(x)‖2
(15)

and hence

E[(x − X̂)2] = E[Z2|x] ≈ E[W 2|x]

‖s′(x)‖4
+

E[N2|x]

‖s′(x)‖4

= σ2
w � k

i=1 s′i(x)4

‖s′(x)‖4
+ σ2

n
1

‖s′(x)‖2
. (16)

From this we conclude

E[(X − X̂)2] ≈ � f(x) � σ2
w � k

i=1 s′i(x)4

‖s′(x)‖4
+ σ2

n
1

‖s′(x)‖2 � dx

(17)

where f(x) is the pdf of x. The second term in (17) is the MSE con-
tribution from the channel noise. (This term was also derived in [9]
for the bandwidth expansion case.) It tells us that we should aim
for stretching the curve as much as possible, like stretching a rubber
band, keeping in mind the constraint (2) at the same time as we also
keep a high enough distance between different folds of the curve pre-
venting large decoding errors. In order to stretch the curve it needs
to turn in different directions which occurs when s′

i(x) �= s′j(x) for
some i �= j. If we instead study the first part of (17), which is the
MSE contribution from the observation noise, it is straightforward
to show that it is minimized when s′1(x) = s′2(x) = · · · = s′k(x).
This indicates a linear system. Hence, from (17) we understand the
tradeoff between optimizing the system for being robust to the chan-
nel noise and for being robust to the observation noise: If we want
to combat the channel noise we should create nonlinear curves s(x).
On the other hand, if we want to combat the observation noise lin-
ear encoding functions will be more appropriate. This further tells
us that in a situation where σ2

w is low, i.e. there is high correlation
between the observations, there is a lot to be gained by designing
nonlinear encoding functions s(x). For the opposite case, i.e. low
correlation, we can expect less gain from using nonlinear encoding
functions s(x).

3.5. Proposed Scheme

Based on the analysis in Section 3.4 we concluded that linear func-
tions s(x) are good with respect to the observation noise but ineffi-
cient with respect to the channel noise. Therefore, in order to pro-
duce a flexible code able to handle both observation and channel
noise, we propose a piecewise linear encoding function s(x) as fol-
lows

si(xi) = � αxi 1 ≤ i ≤ k0

α(xi − Δ � xi
Δ � ) k0 < i ≤ k

(18)

where 	·
 denotes rounding to the nearest integer, α will control
the power usage and Δ will for i > k0 control the length of each
period in the periodic sawtooth function si(xi). Hence, we allow
noncontinuous and nondifferentiable functions which was not the
case in the analysis. The reason is that this results in a system where
s′1(x) = s′2(x) = · · · = s′k(x), except at the discontinuities, which
is desirable with respect to the observation noise. At the same time
we get a nonlinear system, better able to use the available channel
space, which is desirable with respect to the channel noise. The
drawback is that the approximation in (11) is violated making the
decoder (12) inefficient. We therefore modify the decoding function

as follows:

1. Create the ML estimate of x based on the linear encoding
functions:

x̂k0 =
1

k0

k0�
i=1

ri

α
. (19)

2. Assume that |x̂k0 − xi − ni/α| ≤ Δ/2 for k0 < i ≤ k and
create the ML estimates

x̂i(ri) = arg min
xi 	 (si(xi) − ri)

2|
xi ∈ {|x̂k0 − xi| ≤ Δ/2}) . (20)

This function tries to predict the removed part Δ � xi
Δ � from

(18) based on the derived x̂k0 .

3. Based on this, create the final estimate of x as

x̂ =
1

k 
� k0�
i=1

ri

α
+

k�
i=k0+1

x̂i(ri) � . (21)

Let us now analyze the power consumption. Note that the power
used by the nonlinear encoding functions will be less than the power
used by the linear encoding functions. We define the normalized
average power consumption as

P (Δ, k0) =
1

kα2 	 k0E[sI(XI)
2] + (k − k0)E[sJ(XJ)2] � (22)

where we assume I ≤ k0 < J ≤ k. (The reason for dividing
with α2 is that we want P (Δ, k0) to represent the change in power
consumption due to Δ and k0 and not due to the scaling factor α.)
By performing timesharing the sensors could use the linear encod-
ing function for a fraction k0/k of the available time slots and then
use the nonlinear encoding functions the rest of the time. Hence,
P (Δ, k0) can be seen as the average power used by each sensor
when α = 1. We therefore choose

α = � P

P (Δ, k0)
(23)

in order to fulfill (2). In [5] we derive MSE for the proposed scheme
(18) as a function of Δ and k0. This gives us the possibility to op-
timize the choice of Δ and k0 for a certain set of noise parameters.
Lack of space prevents us from including these derivations in this
paper.

4. SIMULATIONS

In Figure 3 we present simulation results for the proposed code (18).
In both simulations we used a zero-mean i.i.d. Gaussian distribu-
tion for X with variance σ2

x. We measure the performance in SDR

� (σ2
x + σ2

w)/E[(X − X̂)2] versus SNR � P/σ2
n and the corre-

lation is measured as ρ � σ2
x/σ2

w. In order to design the systems
for different noise levels we have used the formula from [5] to op-
timize the choices of Δ and k0. In the simulations we let ρ equal
what the system has been designed for, but we vary the SNR in or-
der to study the effects of SNR mismatch. We present results for two
cases: k = 10 and k = 100. The performance of the linear system
is shown by the dashed lines and the performance of the proposed
scheme s(x) is shown by the solid lines.

In Figure 3(a) the systems have been optimized for an environ-
ment corresponding to the case described in Section 3.2, i.e. close to
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Fig. 3. Systems for k = 10 and k = 100 designed for (a) ρ = 70dB

and SNR= 10dB as well as SNR= 20dB (b) ρ = 20 dB and SNR=
10dB. In all simulations the ’true’ ρ has been used but the SNR is

varied.

bandwidth expansion which occurs when ρ has a high value. We
have here included two designs for ρ = 70 dB, namely SNR =
10 dB and SNR = 20 dB. Hence, one of the systems is optimized
for a better channel meaning that different folds of s(x) should be
packed closer to each other. This will give a better performance for
high SNRs but the code will also break down faster when the SNR
is decreased. This is clearly visible in the figure. The behavior of
the designed systems follows the predicted behavior from (17): For
low SNRs the nonlinear codes break down and the linear system is
the better one. However, increasing the SNR above a certain thresh-
old makes the probability of large decoding errors small and the code
will start work as a bandwidth expansion code. Decreasing σ2

n above
this threshold with some factor, hence increasing the SNR, will lead
to the same factor of decrease in the second term of (17). This be-
havior is clearly visible in the figure. Increasing the SNR even more
will at some point make the first term of (17) the dominant one and
the performance reaches a saturation level.

Finally, we consider the, for this paper, more interesting case

where we optimize systems with fair amounts of both observation
and channel noise. In Figure 3(b) we have designed systems for ρ =
20 dB and SNR = 10 dB. Also here we simulate for the designed ρ
but we vary the SNR. It is clear that there will be a large gain over the
linear system except at low SNRs, where the source–channel code
breaks down, and at high SNRs, where there is no gain in using
nonlinear codes.

5. CONCLUSIONS

We have explained the similarities between the problem of dis-
tributed source–channel coding and the problem of bandwidth ex-
pansion. Based on this we have presented and analyzed a suitable
structure for distributed source–channel codes. This analysis gives
us insight into desirable properties for such a system. Based on this
understanding an explicit code is presented, analyzed and simulated.
A large gain was obtained from the nonlinear code compared to the
linear code.
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