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ABSTRACT
In this paper, we propose a novel radius control strategy for

sphere decoding referred to as inter search radius control
that provides further improvement of the computational com-

plexity with minimal extra cost and negligible performance

penalty. The proposed method focuses on the sphere radius

control strategy when a candidate lattice point is found. For

this purpose, the dynamic radius update strategy as well as

the lattice independent radius selection scheme are jointly

exploited. From simulations in multiple-input and multiple-

output (MIMO) channels, it is shown that the proposed

method provides a substantial improvement in complexity

with near-ML performance.

Index Terms— maximum likelihood, tree pruning, sphere

radius, multiple input multiple output (MIMO), sphere decod-

ing

1. INTRODUCTION

Maximum likelihood (ML) detection of the sequence of fi-

nite alphabet symbols requires an exhaustive search for the

entire block of symbols. Although the ML solution is optimal

for achieving the minimum probability of error, it did not re-

ceived attention until recently due to the NP-hard nature of the

problem [2, 4]. After the rediscovery of Fincke and Pohst’s

work [1], an efficient search algorithm called Sphere Decod-
ing (SD) has received much attention these days. Since the

heart of the SD algorithm lies on the choice of sphere radius

within which the search space is limited, several approaches

controlling the sphere radius have been proposed including

increase radius search (IRS) [3], improved increasing radius
search (IIRS) [6], and increasing radii algorithm (IRA) [5].

It has been shown that these algorithms improve the compu-

tational complexity at the expense of negligible performance

loss. In [7], we have proposed an algorithm relaxing the strict

ML search to gain the benefit in computation referred to as

probabilistic tree pruning SD (PTP-SD). We have shown that

an addition of the probabilistic noise constraint into the path

metric, generated by the probabilistic model of the unvisited

nodes, expedites the tree pruning. Since the sphere constraint
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is loose for most layers of the tree being searched, by placing

the probabilistic pruning condition on top of the sphere condi-

tion, we could achieve considerable savings in computation.

In this paper, we propose a sphere radius control strategy

that provides further improvement of the computational com-

plexity with minimal extra cost and code change. While the

PTP-SD tries to fortify the structural weakness of the sphere

search by tightening the sphere radius per layer, proposed

method focuses on the sphere radius control strategy when

a candidate lattice point is found. In this respect, we can view

the PTP-SD as intra-search radius control and the proposed

method as inter-search radius control (ISRC). Note, despite

the fact that the SD shrinks the volume of hypersphere by

dynamically updating the radius whenever a new candidate is

found, it does not guarantee the fast converge to the ML point.

Hence, a strategy providing an aggressive radius control is re-

quired for achieving further reduction in search space. In fact,

the ISRC exploits the competition between the dynamically

updated radius and the statistically designed set of radii. As a

result, number of unpromising lattice points is excluded from

the search process while the performance close to the ML is

maintained.

The rest of this paper is organized as follows. In section II,

we briefly review the SD and the PTP-SD. In section III, we

present the proposed ISRC algorithm. The simulation results

and discussion are provided in section IV.

2. SD AND PTP-SD

2.1. SD Algorithm

Consider the ML detection of a real-valued linear system de-

scribed by r = Hs + v where s is the transmitted symbol

vector whose components are elements of a finite set F , r is

the received signal vector, v is the i.i.d. Gaussian noise vec-

tor, and H is a channel matrix. Under the assumption that H
is given, the ML estimate becomes

sml = arg min
s∈Fm

|| r − Hs ||2. (1)

Instead of searching all lattice points Hs, the SD algorithm

searches the lattice points inside the hypersphere with radius√
r0, i.e., || r−Hs ||2 < r0. In fact, actual search is performed
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in the QR-transformed domain given by

J(s) = ||y − Rs ||2 ≤ d0 (2)

where H = [Q U][RT 0T ]T , y = QTr, and d0 = r0 −
||UTr||2. Since R is an upper triangular matrix, (2) becomes

m∑

k=1

( yk −
m∑

l=k

rk,lsl )2 ≤ d0. (3)

Emphasizing that each term in the left side is a function of

sk, · · · , sm (henceforth denote sm
k ), (3) can be expressed as

B1(sm
1 ) + B2(sm

2 ) + · · · + Bm(sm
m) ≤ d0 (4)

where Bk(sm
k ) = ( yk − ∑m

l=k rk,lsl )2 is the branch metric

at layer m−k+1. In the first layer (bottom row in the matrix

structure), sm satisfying Bm(sm) ≤ d0 is found. Once sm is

chosen, we move on to the next layer to find sm−1 satisfying

Bm−1(sm
m−1) + Bm(sm) ≤ d0. By repeating this step and

updating a radius whenever a new lattice point Rs is found,

the SD algorithm outputs the ML point sml for which the cost

function J(s) is minimized.

2.2. Probabilistic Tree Pruning (PTP) SD

Although the SD algorithm should test the condition de-

scribed in (4), due to the causality of the search, the actual

condition to be checked is

Pm
k (sm

k ) = Bk(sm
k ) + · · · + Bm(sm

m) ≤ d0 (5)

where Pm
k (sm

k ) is the path metric that is an accumulation of

branch metrics from layers 1 to m − k + 1. The key idea be-

hind the probabilistic tree pruning is to use (4) instead of (5)

throughout all layers in the search. Since the branch metrics

B1, · · · , Bk−1 are unavailable at layer m − k + 1, assum-

ing perfect decoding, we model them as Gaussian noise, i.e.,

Bl(sm
l ) = ( yl −

∑m
j=l rl,j sj )2 = v2

l where vl is the l-th
component of v. With this setup, the new necessary condi-

tion becomes

m∑

l=1

Bl(sm
l ) = Pm

k (sm
k ) +

k−1∑

l=1

v2
l ≤ d0. (6)

Since v1, · · · , vk−1 are values from i.i.d. Gaussian distribu-

tion,
∑k−1

l=1 v2
l becomes the χ2-random variable (RV) with

k−1 degrees of freedom (DOF). Denoting Φk−1 =
∑k−1

l=1 v2
l ,

(6) becomes

Pm
k (sm

k ) + Φk−1 ≤ d0. (7)

In order to obtain the pruning condition, a notion of pruning

probability is introduced. On each node visited, we examine

the probability that the rest of the tree is decoded perfectly

so that the remaining portion is a pure noise contribution. If

d0

layer

Path metric

d0

~

1 2 3 . . . mm-1

(a) Early pruning typical in low to mid SNR

d0=J(s0)

. . .

layer

Path metric

d0

~

J(s1)

4 5 61 2 3 m-1 m

(b) Pruning is not effective in high SNR

Fig. 1. Illustration of PTP-SD.

the probability of this event is too small and thus less than a

pre-specified threshold, we regard this event as unlikely one

and prune the subtree starting from the node. This condition

is summarized as

Pr(Φk−1 ≤ d0 − Pm
k (sm

k )) < Pε (8)

where Pε is the pre-specified pruning probability. Since the

left side of (8) is the CDF of χ2-RV, we have

d0 − Pm
k (sm

k ) < βk−1. (9)

where βk−1 = F−1
Φ (Pε ; k − 1). The interpretation of (9)

is that if the path metric in layer m − k + 1 is larger than

d0 − βk−1, then the rest of search is unlikely to satisfy the

sphere condition even for the best scenario (the remaining

nodes are detected perfectly and their contributions are noises

only). Hence, whenever a path sm
k meets this condition, we

remove all its children from the tree (refer Fig. 1(a)).

In [7], we reported a significant reduction of complexity

of the PTP-SD over the SD in low and mid SNR regimes.

However, the benefit of the PTP-SD vanishes as the SNR
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increases so that the complexity of the PTP-SD converges

asymptotically to the SD complexity in the high SNR regime.

The main reason is that if the cost function difference

(J(s0) − J(s1)) is larger than βmax, as illustrated in Fig.

1(b), the pruning of the PTP-SD is no more useful. Indeed, as

the distance between cost functions increases, the efficiency

of PTP-SD disappears. Hence, it might be better to consider

lattice independent radius selection strategy for this scenario.

3. INTER-SEARCH RADIUS CONTROL (ISRC)

3.1. Lattice Independent Radius Selection

As a lattice independent radius selection scheme, increase
radius search (IRS) has been proposed [3]. The assump-

tion of IRS is that when the detection is done perfectly,

branch metrics would contain the noise contribution only.

Although it is an ideal scenario but provides a clue to

choose the initial radius square d0. With this assumption,

||y − Rs ||2 =
∑n

i=1 v2
i becomes the χ2-RV with n DOF.

By denoting Φn =
∑n

i=1 v2
i and setting a threshold proba-

bility Pth (say Pth = 0.01), a condition for the initial radius

is obtained as FΦ(d0 ; n) = 1 − Pth. Taking the inverse of

χ2-CDF, we directly get d0 = F−1
Φ (1 − Pth ; n). Due to

the fact that the radius is chosen by the noise statistics only,

this approach has an advantage of skipping lots of unneces-

sary lattice points in the initial search. However, if lattice

points are densely packed, this method might not be effective

(e.g., low SNR scenario). In addition, when d0 is chosen to

be smaller than the ML distance (d0 < J(sml)), the sphere

search fails. In this case, d0 should be re-computed with

smaller Pth and the search should be started over so that an

additional loop is needed for the implementation.

3.2. Inter Search Radius Control

By the marriage between the dynamic radius update and the

lattice independent (noise statistics based) radius selection,

we can maximize the benefit in complexity without sacrificing

the performance. The salient feature of the proposed method

is to speed-up the search by choosing a smaller sphere radius

than the cost function of the lattice point found.

In a normal SD operation, the detection error occurs when

the last candidate sf which always equals sml is not equal to

the transmitted symbol vector stx

Perr(ML) = P (sml �= stx)
= P (J(sml) < J(stx) = ||v||2). (10)

However, if an aggressive radius control is introduced, the

search might be finished without reaching the ML point. In

this case, the detection error probability is

Perr(Near-ML) = Perr(sf = sml) + Perr(sf �= sml)
= P (sf �= stx, sf = sml) + P (sf �= stx, sf �= sml). (11)

The first term in the right of (11) equals Perr(ml). The second

term causing an additional increase in the error probability

can be further expressed as

P (sf �= stx, sf �= sml) = P (J(sml) < J(sf ) < ||v||2)
+P (J(sml) ≤ ||v||2 < J(sf )). (12)

Since J(sml) and ||v||2 are equal or very close for the mid

and high SNR regimes, the second term in (12) becomes a

dominating factor and thus

Perr(Near-ML) − Perr(ML) ∼ P (J(sml) ≤ ||v||2 < J(sf )). (13)

In the sphere search, the event J(sml) ≤ ||v||2 < J(sf )
occurs when the sphere radius square d0 is set aggressively to

d0 < J(sml) ≤ ||v||2 < J(sf ). Since our goal is to design

the sphere radius reducing the complexity while maintaining

the performance close to ML detection (say Perr(Near-ML)−
Perr(ML) is within Pδ), we should have

P (d0 < J(sml) ≤ ||v||2 < J(sf )) ≤ Pδ. (14)

Again it is highly likely that J(sml) = ||v||2 for the mid and

high SNR regimes, so we approximately have

FΦ(J(sf ) ; n) − FΦ(d0 ; n) ≤ Pδ (15)

and directly we have F−1
Φ (FΦ(J(sf ) ; n) − Pδ ; n) ≤ d0.

Hence, a natural choice of the sphere radius when a lattice

point s is found is

d0 = F−1
Φ (FΦ(J(s) ; n) − Pδ ; n). (16)

Employing (16), further shrinking of the search space can be

achieved. In fact, when the lattice points are packed locally in

their cost function, even with small Pδ , employment of (16)

provides a good complexity gain. Regarding Pδ , it is clear

that FΦ(J(s) ; n) − Pδ > 0 and thus we choose

Pδ = ε FΦ(J(s) ; n) (17)

where 0 < ε < 1. As a rule of thumb, we might use relatively

large ε (≈ 0.5) for a few initial candidates and small ε (≈ 0.1)

for the rest of candidates.

The features of the ISRC strategy are summarized as

1. By the addition of the probabilistic radius control on

top of the dynamic adjustment, tight sphere radius min-

imizing performance loss can be obtained.

2. ISRC strategy and intra search radius control (PTP-SD)

can be effectively united. The former strategy is espe-

cially useful when the lattice points are spaced apart

(e.g., high SNR) and the latter one is more effective for

the densely packed lattice structure (e.g., low SNR).

3. The extra complexity of the intra search radius control

is at most one subtraction per layer [7] and that for the

ISRC is one compare operation when a candidate lat-

tice point is found. Since the online computation of

χ2-CDF and inverse CDF is a bit cumbersome, lookup

table might be a good option for computing d0.
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Fig. 2. Performance and complexity of SD algorithms for

8 × 8 MIMO system with 16-QAM modulation.

4. SIMULATIONS AND DISCUSSION

In order to observe the performance of the proposed method,

we consider 16-QAM transmission over the MIMO channel

with Rayleigh fading (hij ∼ CN(0, 1)). For comparison, we

employ linear MMSE estimation, reference SD (d0 = ∞),

IRS, PTP-SD, as well as the proposed ISRC+PTP-SD algo-

rithm in our simulation, where we set Pε = 0.1 for the PTP-

SD. As a measure for the performance and complexity, we

employ the symbol error rate (SER) and the average number

of nodes visited.

Fig. 2(a) provides the performance results for 8×8 MIMO

systems with 16-QAM modulation (total number of lattice

points is 168 ∼ 4.3 × 109). While the performance differ-

ence is unnoticeable among the reference SD, IRS, PTP-SD,

and the proposed method over the entire simulation range,

we observe the clear distinction in complexity as shown in

Fig. 2(b). Even though the PTP-SD achieves substantial com-

plexity savings in the low SNR regime, as mentioned in Sec-

tion 2.2, its benefit disappears as the SNR increases . In con-

trast, the IRS-based SD shows relatively large complexity re-

duction in the high SNR regime so that we observe the clear

crossover point between them around 14 dB. Since the pro-

posed method (ISRC+PTP-SD) adopts the advantage of both,

it is no surprise that the proposed method outperforms both in

complexity. In fact, the proposed method achieves the mini-

mal computational complexity among all methods under test

providing 3X reduction in complexity over the reference SD.

Even compared to the PTP-SD, the proposed method achieves

at least 30% reduction in the entire simulation range.
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