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ABSTRACT

We propose a new algorithm for noncoherent sequence

detection of M-ary phase-shift-keying (M-PSK) symbols

transmitted over a block fading channel. The algorithm is

of complexity O(T ), where T is the sequence length, and

is therefore computationally superior to existing maximum-

likelihood (ML) detectors of complexity O(T logT ). Our

detector is based on a new approximation we propose to the

noncoherent ML function. We show that by using this close

approximation, the detection problem reduces to a nearest

lattice point problem for the lattice A∗n, from which we de-

rive our O(T ) approach. Simulation results are provided that

show the difference in bit error rate is negligibly small for a

wide range of signal-to-noise ratios.

Index Terms— Differential phase shift keying, Mobile

communication, Communication systems.

1. INTRODUCTION

We consider noncoherent detection of M-ary phase shift key-
ing (M-PSK) symbols transmitted in the block fading chan-

nel. Noncoherent transmission is applicable to systems ex-

hibiting small coherence intervals where regular transmission

of pilot symbols is wasteful. Such situations typically oc-

cur in mobile communications [1, 2]. Moreover, as indicated

by Chen et al. [1] standard coherent detection is, in a sense,

inherently suboptimal because it only uses the energy of a

small number of pilot symbols for channel estimation, rather

than also exploiting the (typically larger) energy in the un-

known data symbols. Other applications of noncoherent de-

tection include recovery from deep fades in pilot-symbol as-

sisted modulation based schemes, eavesdropping, and non-

data-aided channel estimation [2].

A number of algorithms have been devised for the non-

coherent detection of PSK. Wilson [3] and Makrakis and Fe-

her [4] both propose algorithms of complexity O(eT ) where

T is the block length. Liu et. al. [5] describe a suboptimal

algorithm that requires O(T 2) arithmetic operations. War-

rier and Madhow [6] describe an approximate ML algorithm

that they claim to require O(T ) operations. It was shown by

Sweldens [7] that the algorithm actually requires O(T 2) op-

erations in order for the approximation to remain valid as T
increases.

Mackenthun [8] found an algorithm for ML noncoherent

detection of M-PSK that required O(T logT ) arithmetic oper-

ations. Later, Sweldens [7] rediscovered the same algorithm.

More recently, low complexity algorithms for detection of

multi-level modulation schemes such as PAM and QAM have

been developed [2, 9].

Here we propose an approximation to the ML function for

noncoherent detection of M-PSK. Allowing the approxima-

tion enables the detection problem to be represented as a near-

est lattice point problem in the well studied lattice A∗n [10–13].

Recently a linear-time nearest point algorithm for A∗n was dis-

covered [13]. We use this to create a noncoherent detector for

M-PSK that requires O(T ) arithmetic operations. We refer to

the new detector as the lattice detector.

Due to the approximation of ML function the lattice de-

tector is not a ML detector. However, we show analytically

that the approximation is close to the ML function for the

range of signal-to-noise ratios of interest for M-PSK. We

show by simulation that the lattice detector performs practi-

cally identically to the ML detector. The lattice detector is

asymptotically less computationally intensive than the ML

detector proposed by Mackenthun [8] and Sweldens [7].

2. NONCOHERENT BLOCK DETECTION

For M-PSK we define a codeword u as a vector of length T
such ut ∈ {0,1, · · · ,M− 1}. A block of M-PSK symbols is

generated from a codeword by

xt = exp

(
2π jut

M

)
(1)

where j =
√−1 and t ∈ {0,1, . . . ,T − 1}. We write vectors

and matrices in bold. The tth element in a vector is denoted

by a subscript: xt .

We consider transmitting a block of M-PSK symbols in

the block fading channel

y = hx+n (2)
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where h is a complex scalar representing the channel, n is

white complex Gaussian noise and y is the received signal.

The real and imaginary part of the nt have variance σ2.

The likelihood function derived from (2) is

L(y;u,h) =−‖y−hx‖2 (3)

where we recall that x is a function of u. The ML estimate of

h given u (or equivalently x) can be found by differentiation

and is given by [2]

ĥML =
y†x
x†x

=
y†x
T

(4)

where † indicates the Hermitian transpose. Substituting (4)

into (3) and simplifying we find that the ML estimate of u,

conditioned on the maximization w.r.t. h, is given by

ûML = argmax
u
|y†x|2. (5)

In the case that h is known then the ML estimate of u is

ûML =
⌊

M
2π

(∠y−1∠h)
⌉

mod M (6)

where ∠(·) denotes the complex argument and operates on

vectors by taking the complex argument of each element and

�·� applied to a vector denotes the vector in which each ele-

ment is rounded to a nearest integer1 and 1 = (1,1, . . . ,1)†.

An important property of noncoherent detection of M-

PSK is the ambiguity between the codewords x and e2πk j/Mx
for k ∈ Z. This is easily observed in (5) as

|y†e2πk j/Mx|2 = |y†x|2.
The ambiguities are typically resolved, for example, by using

the phase of the last symbol from the previous codeword [1]

or by differential encoding [8, 14]. We have chosen to use

differential encoding in this paper. However, other schemes

can be used.

We now briefly describe the ML detector found by Mack-

enthun [8] and Sweldens [7]. From (6) and the phase ambi-

guity of PSK constellations it is evident that the ML estimate

of u is contained in the set

S =
{⌊

M
2π

(∠y−1φ)
⌉
| φ ∈ [0,2π/M]

}
.

It can be shown that |S| = T + 1. An ML estimator can then

test each u ∈ S in turn and return the u that maximizes (5).

Both Mackenthun and Sweldens describe an algorithm

that performs this procedure in O(T logT ) operations. The

algorithm sorts the T + 1 elements so that the likelihood of

each u ∈ S can be computed efficiently in a recursive manner.

The complexity of the algorithm is asymptotically dominated

by the sorting procedure that requires O(T logT ) operations.

The algorithm has many similarities with the nearest point al-

gorithm for the lattice A∗n described in [12].

1The direction of rounding for half-integers is not important. However,

the authors have chosen to round up half-integers in their implementation.

3. THE LIKELIHOOD APPROXIMATION

In this section we derive an approximation to the ML function

for the noncoherent detection of M-PSK (3). We show analyt-

ically that the approximate objective function is close to the

ML function when σ2 is sufficiently small. In Section 5 we

show how maximizing the approximate function is equivalent

to finding a nearest point in the lattice A∗n.

Noting (6) define the approximate ML function

f (y; û, ĥ) =−
∥∥∥∥∠y−1∠ĥ− 2πû

M

∥∥∥∥
2

=−‖z−1θ− û‖2 (7)

where z = M/2π∠y and θ = M/2π∠ĥ. We define the lattice de-

tector to output

ûlattice = argmax
û

max
ĥ

f (y; û, ĥ).

Whereas maximization of the ML function (3) amounts to

choosing û and ĥ such that the Euclidean distance between y
and ĥx̂ is minimized, the lattice detector in (7) chooses û and

ĥ such that the the Euclidean distance between the complex
arguments of y and ĥx̂ is minimized. Intuitively, we expect

(3) and (7) to be closely related. We formally quantify this

relationship in the remainder of this section.

Firstly note that (3) can be rewritten as

L(y; û, ĥ) =−‖y‖2 +2Re(ĥy†x̂)−|ĥ|2‖x̂‖2

= 2Re
(

ĥy†x̂
)
−|ĥ|2T

= 2|ĥ|
T

∑
t=1

|yt |cos(δt)−|ĥ|2T

= 2|ĥ|
T

∑
t=1

|yt |
(

1− δ2
t

2
+O(δ4

t )
)
−|ĥ|2T

by letting δt = ∠x̂t +∠ĥ−∠yt and by taking the Taylor series

expansion for cos and dropping the constant term −‖y‖2. At

‘strong’ peaks in L(y; û, ĥ) the δt are small and δ2
t � O(δ4

t ).
Then the ML function is well approximated by

L(y; û, ĥ)≈ 2|ĥ|
T

∑
t=1

|yt |
(

1− δ2
t

2

)
−|ĥ|2T

= 2|ĥ|
T

∑
t=1

|yt |
(

1− 4π2(ût +θ− zt)2

2M2

)
−|ĥ|2T.

When σ2 is small |yt | ≈ |h| and we obtain

≈−4|ĥ|π2

M2
‖z−1θ− û‖2−|ĥ|2T +2|ĥ|

T

∑
t=1

|yt |

=
4|ĥ|π2

M2
f (y; û, ĥ)−|ĥ|2T +2|ĥ|

T

∑
t=1

|yt |= g(y; û, ĥ).
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As f (y;u,h) is independent of |h| and because g(y; û, ĥ)
is an approximation to the ML function near ‘strong’ peaks

and when σ2 is small

ûML ≈ argmax
û

max
ĥ

g(y; û, ĥ)

= argmax
û

max
ĥ

f (y; û, ĥ) = ûlattice.

We see that the lattice detector will be a close approximation

to the ML detector when σ2 is small. In Section 6 it is shown

that the requirement that σ2 is small is not very restrictive in

practice. The lattice detector performs very similarly to the

ML detector for the range of signal-to-noise ratios of interest

for PSK.

4. THE LATTICE A∗N

A lattice, L, is a set of points in R
n such that

L = {v ∈ R
n|v = Bw,w ∈ Z

n}
where B is termed the generator matrix. The cubic lattice Z

n

is the set of n dimensional vectors with integer elements. The

lattice A∗n can be defined as the projection of the cubic lattice

Z
n+1 onto the hyperplane orthogonal to 1. This is,

A∗n =
{

Qw | w ∈ Z
n+1

}
(8)

where Q is the projection matrix

Q =
(

I− 11†

n+1

)
(9)

and I is the (n+1)× (n+1) identity matrix. It follows that Q
is the generator matrix for A∗n.

The nearest lattice point problem is: Given p ∈ R
n and

some lattice L whose lattice points lie in R
n, find the lattice

point v ∈ L such that the Euclidean distance between p and v
is minimized [10,15–17]. Van Emde Boas [18] and Ajtai [19]

showed that the problem is NP-complete for general lattices.

For certain lattices, the problem is considerably easier.

A number of algorithms to compute the nearest lat-

tice point in the lattice A∗n exist in the literature. Conway

and Sloane [16] found an algorithm to compute the near-

est point in O(n2 logn) arithmetic operations. Later they

improved this algorithm so that it required only O(n2) oper-

ations [17]. Clarkson [11] found an algorithm that required

only O(n logn) operations and another algorithm requiring

O(n logn) operation was found by some of the authors and

Quinn [12]. Recently, a linear time algorithm was found by

some of the authors and Smith and Quinn [13].

5. A∗N AND THE LIKELIHOOD APPROXIMATION

For fixed u, maximizing (7) with respect to θ we obtain θ̂ =
1†(z−u)/T . Substituting this estimate into (7) the likelihood

function becomes

f (y; û) =−‖Qz−Qû‖2 (10)

where Q is the projection matrix defined in (9). Since Q is

the generator matrix for the lattice A∗T−1, the maximization

of (10) is achieved by choosing û such that Qû is the nearest

point in A∗T−1 to Qz. We can calculate û in linear-time by us-

ing the nearest point algorithm for the lattice A∗T−1 described

in [13] which we now discuss.

Like the O(T logT ) algorithm of [7, 8] for noncoherent

detection, the nearest lattice point problem for A∗T−1 can be

solved using a sorting procedure of O(T ) elements [12, 13].

The complexity of sorting O(T ) elements is well-known to

be O(T logT ). However, for the nearest A∗T−1 lattice point

problem it was shown in [13] that only a partial sort is re-

quired, where the elements are allocated into O(T ) ‘buckets’.

It was shown in [13] that due to the geometric properties of

the lattice the nearest point can be found without further sort-

ing each bucket. The complexity of this partial sort is only

O(T ), and this results in a nearest lattice point algorithm of

complexity O(T ). Therefore the complexity of our proposed

algorithm is only O(T ). Note that this approach is in contrast

to a standard bucket sort [20], where pathological cases of z
may occur that result in a complexity of O(T 2).

6. RESULTS

Simulations were run to compare the bit error rate (BER) of

the lattice detector and the ML detector as the signal to noise

ratio per bit (Eb/N0) was varied from 2 dB to 10 dB. The block

length was set to 4, 8 and 64 and M = 4. The channel, h, was

generated such that h = e jφ where φ is uniformly distributed

in the range [0,2π).
Results are plotted in Figure 1. It is evident that there is

negligible difference in performance between the lattice de-

tector and the ML detector. Both detectors perform better than

conventional 2 symbol differential detection. As T increases

both detectors approach the performance of differentially en-

coded 4-PSK when perfect channel state information (CSI) is

available.

Table 1 shows the practical computational performance

of the lattice detector and the Mackenthun/Sweldens ML de-

tector. The lattice detector appears to be be roughly twice

as fast as the Mackenthun/Sweldens detector. This perfor-

mance gap is expected to increase as T increases to reflect

that the that lattice detector requires O(T ) operations whereas

the Mackenthun/Sweldens detector requires O(T logT ) op-

erations. The computer used is an Intel Core2 running at

2.4GHz. The software is written in Java.

7. CONCLUSION

In this paper we have derived a linear-time noncoherent de-

tector for M-PSK signals. We propose an objective func-
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Fig. 1. Bit Error Rate (BER) versus Eb/N0.

Table 1. Computation Time in seconds for 105 trials
Estimator T=8 T=64 T=256

Lattice 2.77 9.67 33.62

ML Mac/Swe 3.87 17.16 63.72

tion that is an approximation to the ML function. We show

that maximization of the objective function amounts to find-

ing the nearest lattice point in the lattice A∗n. Using a linear-

time nearest point algorithm for A∗n [13] we derive an algo-

rithm for noncoherent detection of M-PSK that requires only

O(T ) arithmetic operations where T is the block length. We

show analytically that the objective function is a close ap-

proximation to the ML function. We show by simulation that

the lattice detector performs practically identically to the ML

detector. The lattice detector is computationally superior to

existing ML detectors that require O(T logT ) arithmetic op-

erations [7, 8].
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